Memory-Harvesting VMs in Cloud Platforms

Alexander Fuerst!
Indiana University

Gohar Irfan Chaudhry

Microsoft Research

Kevin Broas
Microsoft Azure

Stanko Novakovié¢
Microsoft Research

Prateek Sharma
Indiana University

Eugene Bak

Microsoft Azure

Iigo Goiri
Microsoft Research

Kapil Arya

Microsoft Research

Mehmet Iyigun

Microsoft Azure

Ricardo Bianchini
Microsoft Research

ABSTRACT

Cloud platforms monetize their spare capacity by renting “Spot” vir-
tual machines (VMs) that can be evicted in favor of higher-priority
VMs. Recent work has shown that resource-harvesting VMs are
more effective at exploiting spare capacity than Spot VMs, while
also reducing the number of evictions. However, the prior work
focused on harvesting CPU cores while keeping memory size fixed.
This wastes a substantial monetization opportunity and may even
limit the ability of harvesting VMs to leverage spare cores. Thus,
in this paper, we explore memory harvesting and its challenges
in real cloud platforms, namely its impact on VM creation time,
NUMA spanning, and page fragmentation. We start by characteriz-
ing the amount and dynamics of the spare memory in Azure. We
then design and implement memory-harvesting VMs (MHVMs),
introducing new techniques for memory buffering, batching, and
pre-reclamation. To demonstrate the use of MHVMs, we also extend
a popular cluster scheduling framework (Hadoop) and a FaaS plat-
form to adapt to them. Our main results show that (1) there is plenty
of scope for memory harvesting in real platforms; (2) MHVMs are
effective at mitigating the negative impacts of harvesting; and (3)
our extensions of Hadoop and Faa$S successfully hide the MHVMs’
varying memory size from the users’ data-processing jobs and func-
tions. We conclude that memory harvesting has great potential for
practical deployment and users can save up to 93% of their costs
when running workloads on MHVMs.

CCS CONCEPTS

« Computer systems organization — Cloud computing.

KEYWORDS

Cloud computing, memory management, resource harvesting.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02...$15.00
https://doi.org/10.1145/3503222.3507725

ACM Reference Format:

Alexander Fuerst!, Stanko Novakovi¢, fiiigo Goiri, Gohar Irfan Chaudhry,
Prateek Sharma, Kapil Arya, Kevin Broas, Eugene Bak, Mehmet Iyigun,
and Ricardo Bianchini. 2022. Memory-Harvesting VMs in Cloud Platforms.
In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS °22),
February 28 — March 4, 2022, Lausanne, Switzerland. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3503222.3507725

1 INTRODUCTION

Motivation. Cloud platforms such as AWS, Azure, and GCP must
leave some spare capacity (e.g., CPU cores, memory, network band-
width) to ensure that the customers’ workloads can scale out and
experience high platform availability [4]. At the same time, the plat-
forms monetize this unallocated capacity by offering lower-priority
evictable VMs, often called Spot VMs, at discounted prices [3, 6, 10].
If the platform needs the resources taken by a Spot VM for a regular-
priority (or simply regular) VM, it evicts the Spot VM to free up its
resources. Due to their characteristics, customers often use Spot
VMs for batch jobs or other workloads that can tolerate evictions.
Unfortunately, Spot VMs receive a fixed amount of physical re-
sources and (1) cannot shrink to prevent evictions or (2) grow to
use any additional unallocated resources that might become avail-
able on the same servers. To address these limitations, prior work
has proposed dynamic resource harvesting by creating evictable
VMs that can grow and shrink based on the amount of available re-
sources in their host servers [4, 43, 49]. For example, a Harvest VM
grows when it lands on a server with more unallocated resources
than its minimum size or when a regular VM departs from the
server, and shrinks when a new regular VM lands on the server [4].
These prior works have focused mainly on harvesting cores,
leaving unallocated memory on the table. Memory is expensive (e.g.,
roughly 50% of server costs today [39]), so failing to monetize some
of it represents a significant loss for the cloud provider. Moreover,
harvesting cores only either (1) requires a large enough memory for
the maximum number of cores that can be harvested or (2) restricts
the use of the harvesting VMs to CPU-bound workloads with small
memory footprints.
Our work. In this paper, we extend the work of Ambati et al. on
Harvest VMs [4] to also harvest unallocated memory. We refer to
our extension as memory-harvesting VMs (MHVMs). Each MHVM

Fuerst (alfuerst@iu.edu) was an intern at Microsoft Research.

https://doi.org/10.1145/3503222.3507725
https://doi.org/10.1145/3503222.3507725

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

has a minimum memory size, but receives more memory beyond
this minimum depending on the amount of unallocated memory in
its host server. When a regular VM departs the server, the MHVM
receives the newly unallocated memory and expands its allocation.
When a new regular VM arrives, the MHVM reduces its memory
allocation to make room for the VM. The MHVM is only evicted
when the platform needs its minimum set of resources for a new
regular VM. The cloud provider can hide the complexity of dy-
namic resource changes from customers by using MHVMs to create
cheap SaaS (Software-as-a-Service), PaaS (Platform-as-a-Service),
and Faa$ (Function-as-a-Service) offerings.

While memory harvesting is highly desirable, it introduces mul-
tiple challenges that do not exist in core harvesting. First, when a
regular VM arrives, memory harvesting entails de-allocating a large
number of pages in the MHVM and returning them to the hypervi-
sor. This process can take tens of seconds and lengthen the regular
VM creation time. Second, because MHVMs may harvest memory
from multiple NUMA nodes, they may cause incoming regular VMs
to span NUMA nodes and potentially suffer performance loss. Third,
the de-allocation/re-allocation process may cause large pages (e.g.,
2 MB) to be broken down into smaller non-contiguous 4 KB pages,
again potentially hurting the performance of regular VMs. Though
the second and third challenges may also imply performance issues
for the workloads running on MHVMs, they are not as serious
because these workloads should be inherently amenable to perfor-
mance variability (including evictions). The prior work that studied
memory harvesting in virtualized environments [14, 43] considered
none of these challenges and performance implications.

To understand and address these challenges, we first quantify
the opportunity for harvesting unallocated memory in Azure. In
particular, we study how much and often MHVMs would have to
be resized, and the corresponding impact on regular VMs (i.e., VM
creation time, NUMA spanning, and large page fragmentation).

Based on this characterization, we design memory harvesting
managed by a server-local agent. We leverage memory hot-add and
hot-remove mechanisms that exist in modern operating systems,
such as Linux and Windows, to grow and shrink VMs. We minimize
the impact on VM creation time by first reducing the time to reclaim
memory from MHVMs using batching and pre-reclamation. We
also introduce an unallocated memory buffer that hides most of
the reclamation time. This buffer also reduces the likelihood of
NUMA spanning. Our agent handles this buffer asynchronously
and evicts the MHVM if it is not returning enough memory or
generating too much NUMA spanning. The agent also exposes the
NUMA topology to MHVMs and resizes memory in a NUMA-aware
fashion. To avoid large page fragmentation, it reclaims memory in
2 MB contiguous chunks.

To demonstrate the use of our MHVMs in a way that is transpar-
ent to customers workloads, we then modify a cluster scheduling
framework (Hadoop) and a FaaS platform that emulates Azure Func-
tions to adapt to memory resizing. Our memory-harvesting Hadoop
(or simply MH-Hadoop) and MH-FaaS$ increase the performance
at which we can reclaim memory. Moreover, they reclaim large
contiguous chunks of memory which eliminates fragmentation and
increases the reclamation throughput.

Fuerst et al.

Finally, we experimentally evaluate MHVMs, MH-Hadoop, and
MH-FaaS using both microbenchmarks and representative work-
loads from Azure Functions. Our results show that we can harvest
memory without impacting the existing workloads running in reg-
ular VMs and reduce the costs for the frameworks running in the
harvested resources by 92.8%.

Summary. Our main contributions are:

o A characterization of the amount and dynamics of unallocated
memory in a real cloud platform;

e The design and implementation of MHVMs, including novel
techniques for memory buffering, batching, and pre-reclamation;
e Extensions of Hadoop and a FaaS platform to adapt to changes
in the amount of harvested memory; and

o Extensive results from microbenchmarks and real cloud work-
loads exploring the impact of memory harvesting on NUMA span-
ning, page fragmentation, and VM creation time.

2 BACKGROUND AND RELATED WORK

2.1 Cloud platforms and spare resources

VM deployment. Cloud platforms deploy customer VMs across
multiple geographical regions, each comprising multiple server
clusters. Within a region, a bin-packing scheduler assigns VMs to
servers. An agent running on each server is responsible for manag-
ing VMs through their lifecycles (e.g., VM creation). Provisioning
resources for each new VM takes many seconds [26], so platforms
try to optimize it (e.g., [40]) for improved customer experience.
Spare/unallocated cores, Spot, and Harvest VMs. As we illus-
trate in the next section, platforms often end up with spare resources
around its clusters that are not allocated to any customers. Fixed-
size Spot VMs are the current approach platforms use to monetize
this spare capacity. However, Ambati et al. proposed a better ap-
proach to leveraging spare resources: Harvest VMs [4]. These VMs
receive a fixed amount of memory, but can harvest any cores that
happen to be unallocated on the same server. Harvest VMs produce
fewer evictions and lower costs for customers than Spot VMs. Our
work extends the concept of Harvest VMs to memory, while solving
the challenges of memory harvesting without impacting workload
performance and customer satisfaction.

Other variable-resource VMs. Burstable VMs [5, 9] are similar
to Harvest VMs in that they dynamically adjust the number of
physical cores assigned to a VM. However, the adjustment is based
on the concept of “credit” and not on whether there are unallocated
cores. Like Harvest VMs, the memory size is fixed.

Elastic VMs [49] build upon Harvest VMs to harvest both un-

allocated cores and allocated but temporarily idle cores. Again,
memory size is fixed. Sharma et al. proposed Deflatable VMs [43],
a multi-level resource reclamation approach for explicitly adapting
applications, OSes, and hypervisors to any available (unallocated or
simply unused) resources. They considered none of the challenges
we address in this paper.
Other approaches to harvesting. Prior works have considered
co-locating batch workloads with latency-sensitive services on
bare-metal servers [21, 24, 45, 46, 51, 57, 59]. In contrast, we target
platforms with virtualized infrastructure, opaque VMs, and strict
performance requirements. Thus, these works considered none of
the challenges we address.

Memory-Harvesting VMs in Cloud Platforms

2.2 Hypervisor-level memory management

Mechanisms and policies. Modern hypervisors support different
memory reclamation mechanisms, each with their own tradeoffs.
Ballooning [48] uses a kernel driver inside the guest to allocate guest
physical memory pages, and notify the host that the corresponding
host physical pages can be assigned to another guest. Allocating
pages involves making calls to the guest’s memory allocator and
other guest OS memory management overheads that may severely
limit reclamation throughput. On top of ballooning, the guest may
hot-remove the allocated pages from the guest physical address
space. Similarly, most operating systems and hypervisors today
support extending the guest physical address space at run time via
hot-add [23, 38]. Our work leverages these mechanisms.

Policies for dynamic VM memory sizing face the fundamental
size vs performance tradeoff, using techniques such as working
set estimation [8, 60], and application and OS performance met-
rics [16, 19, 50, 56]. Our work focuses on memory harvesting in
production public cloud platforms, where such techniques are con-
sidered invasive and cannot be universally and safely applied. We
also focus on Harvest VMs, which run custom frameworks that are
aware of resource dynamicity and can shrink their working sets
on-demand or pro-actively.

Allocation to NUMA nodes. Modern servers in datacenters
usually have multiple Non-Uniform Memory Access (NUMA)
nodes [44]. When the agent in the server creates a VM, it tries
to assign all the memory from a single (local) NUMA node for low
memory access latency. If there is not enough memory to allocate
the VM in the required NUMA node, the hypervisor will assign
some memory from a different (remote) NUMA node [25] — we
refer to this as NUMA spanning. Accessing a remote NUMA node
has higher latency (e.g., roughly 150 nanoseconds in Intel servers)
as the request needs to cross the interconnect between the nodes.
In some cases, the hypervisor will surface the underlying NUMA
topology to the VM (i.e., VNUMA), in which case the guest OS can
optimize for locality of access. However, individual vYNUMA nodes
can still span the physical NUMA nodes.

Using large pages. To reduce TLB pressure and shorten page walks,
large pages (i.e., 2 MB pages on x86 instead of 4 KB) are commonly
used and especially in virtualized environments in the hypervisor-
level page tables. Some operating systems even include support
for huge pages (e.g., 1 GB) [2]. Large pages produce significant
performance improvements for many workloads, as we illustrate
later in Section 4.2 using representative cloud workloads.
Summary. Prior work [4, 14, 43] did not consider the three major
issues for production deployment of memory harvesting in real
clouds: (1) The impact of memory harvesting on VM creation per-
formance, (2) host memory fragmentation, and (3) NUMA spanning.
Our work develops new techniques to address these challenges and
improves existing techniques, such as the speed of runtime memory
resizing, and develop new ones to mitigate these issues.

3 MEMORY USAGE IN AZURE

In this section, we characterize the resource allocation and its dy-
namics in Azure. We analyze data from thousands of (randomly-
selected) servers from 6 geographical regions over 3 weeks in 2021.
The data spans 4 server generations with 7 different configurations.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

100 T —
== = Cores ,’

80 1 Memory i
3 /
£ 60 /
2
g '4
5 40
%) ,/

20 7

| ®
0 _——
0 20 40 60 80 100

Allocated resources (%)
Figure 1: Allocated resources per server in increasing order. There is
room for harvesting both cores and memory.

Resource allocation. Figure 1 shows the percentage of memory
allocated per server (orange curve) in our sample, in increasing
order. For comparison, the figure also shows the percentage of cores
allocated per server (blue curve), again in increasing order. More
than half of the servers have an allocation of cores above 80%, while
memory allocation is only between 50% and 70% for most servers.
This shows that there is an opportunity to harvest both cores and
memory. These findings are consistent with the ones in [12, 55].
Frequency of allocation changes. The amount of allocated re-
sources changes as VMs arrive and depart at each server, so we
now study the frequency of those events. Figure 2 shows CDFs of
how many VM arrivals (orange curve) and departures (green curve)
a server experiences per hour over all server hours (i.e, #servers X
#hours_in_3_weeks) in our dataset. The orange curve shows a CDF
of the VM events (arrivals or departures) per hour. For example, in
92% of the hours, the number of events per hour is at most 2.
Interestingly, in 82% of the hours, servers see no VM arrivals or
departures despite the high VM event traffic in the 6 regions. There
are 4 main reasons for this high number. First, bin packing of VMs
to servers tends to repeatedly target servers that provide the best
fit; a VM that departs is quickly replaced by another VM. Second,
long-lived VMs consume the vast majority of resources, meaning
that some servers become full with those VMs and see no more
events. Third, many servers host (typically long-lived) full-server
VMs that leave no room for other VMs. Fourth, VM events typically
decrease over nights and weekends to a much lower level than the
datacenters’ peak capacity. At the other end of the spectrum, we
see a small percentage of hours with tens of events per hour. More
importantly, there are no arrivals in 86% of the hours and less than
4 arrivals per hour in 96% of the hours. These results show that
memory harvesting would need to reclaim memory infrequently.
Size of allocation changes. Figure 3 show the CDFs of how much
the core (left) and memory (right) allocations change per event.
Positive values represent VM arrivals and negative ones represent
VM departures. As one would expect, the allocation increases and
decreases are fairly symmetrical. Only 10% of allocation changes
are of more than 8 cores and more than 32 GB of memory. More
importantly, a large percentage of VM arrivals involve fairly small
amounts of memory. For example, 60% of VM arrivals involve 16
GB or less. These results suggest that most memory reclamation
operations would involve relatively small amounts of memory.
Amount of NUMA spanning. We quantify how much NUMA
spanning VMs experience in Azure. We find that 0.9% of allocated

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

100 T LR N SN ——
3 »” ‘/
X .
= 9 7
8 4
w92 1
> »
_8 /]
x 88 *
@ = All VM events
GE, 84 4 VM arrivals
«n === VM departures
80]

0 2 4 6 8 10 12 14 16 18 20
Changes per hour
Figure 2: Resource changes per hour at each server over all hours.
82.5% of the hours involve no VM events, and in 86.5% of them there
are no VM arrivals.

100 —

r T

o)) o]
o o
T —
™ Ry

D
o

Changes CDF (%)

/ [
7 ~

-32 -16 0 16 32 -128 -64 0 64 128
(a) Core change (b) Memory change (GB)
Figure 3: Core and memory allocation changes. Positive values mean
VM arrivals. 90% of the VM creations involve 8 cores or fewer and 32
GB of memory or less.

N
o

0

memory is in a different NUMA node than the cores, and that only
2% of VMs experience spanning. These results show that customers
experience spanning rarely, if at all, so memory harvesting must
keep spanning down to avoid potential customer dissatisfaction.
Large page fragmentation. Finally, VMs currently do not ex-
perience any hypervisor-level large page fragmentation, because
Azure allocates all of each VM’s memory contiguously at its cre-
ation time. Again, this suggests that memory harvesting must keep
fragmentation to a minimum.

Summary and implications. Our analysis of production
data shows that there are substantial opportunities to harvest
spare/unallocated memory in real platforms. It also suggests that
the most challenging operation, memory reclamation from MHVMs,
occurs tens of minutes apart the vast majority of the time. Moreover,
each reclamation would involve less than 32 GB 90% of the time.
Finally, the data suggests that harvesting must properly manage
NUMA placement and hypervisor-level paging, since VMs currently
enjoy local NUMA accesses and large-page second-level accesses.

4 MEMORY-HARVESTING VMS

As we show in Section 3, there is plenty of opportunity for harvest-
ing unallocated memory. Thus, in this section, we first overview
our design for Memory-Harvesting VMs (MHVMs) to monetize
that memory. Then, we discuss the key challenges in implementing
MHVMs and our techniques for preventing MHVMs from harming
the performance of co-located VMs.

Fuerst et al.

4.1 Overview

MHVMs are a new type of evictable VM that builds upon the har-
vesting of cores in Harvest VMs [4]. Customers can deploy MHVMs
to the platform just as any other VM type. A MHVM starts with a
minimum memory allocation and dynamically grows to take unal-
located memory (up to its maximum) when other VMs leave the
server. It also shrinks when its memory is needed by a new VM
arriving in the same server. The harvesting of cores happens exactly
like in Harvest VMs.

Our design has three key aspects. First, for ease of production
deployment, our design minimizes the number of changes needed
by the cloud platform: only the agent that runs on the servers
(Section 2.1) knows about the memory harvesting. Second, our
modified agent leverages mechanisms from the hypervisor to effect
changes to the MHVMs’ memory size. Finally, we build a harvesting
manager that runs on each MHVM to serve as an intermediary
between the MHVM and the applications running on it.

Server agent. We modify the agent to continually adjust the mem-
ory assigned to the MHVMs, based on the amount of available
memory in the server. Our agent also implements multiple tech-
niques for preventing MHVMs from harming the performance of
the co-located VMs (Section 4.3).

Harvesting manager. Our harvesting manager runs as a process
on each MHVM. It monitors the changes in MHVM’s memory size
and notifies the applications running on it to adjust accordingly.
Section 5 describes the application frameworks that we extend to
adjust to MHVMs.

Resizing steps. MHVM resizing operations occur when a VM
needs to be created on a server or has departed from it. In the
former case, the server agent calls a hypervisor API to downsize
each MHVM by the needed amount, the hypervisor then tells the
resizing driver of the guest OS in each MHVM how much memory
it has to return to the hypervisor. The driver typically complies
successfully but may take a substantial amount of time to do so. In-
side the MHVM, the harvesting manager either detects the change
by monitoring the free space in the VM or by receiving a notifica-
tion from the hypervisor (Section 4.4). Upon a VM departure, the
interactions are similar but memory is added to the MHVMs.

Though the concept of MHVMs is fairly simple, implementing
them in a way that does not harm the performance of co-located
regular VMs is a major challenge.

4.2 Challenges in real cloud platforms

The challenges relate to the impact of memory harvesting on VM
creation time, NUMA locality, and large pages.

VM creation times. Being able to quickly add, and especially re-
move, memory from MHVMs is critical to ensuring that cloud SLAs,
such as VM creation time, are not adversely impacted. Under high
server utilization, memory reclamation can be on the critical path
before a new VM can be launched, and thus reclamation through-
put becomes a primary consideration. For instance, reclamation
throughput has been measured at 2-3 GB/s [18, 23], which translates
to a shrinking time (and thus VM creation time) of tens of seconds.
Public cloud providers are highly unlikely to accept a degradation
of this magnitude in VM creation time due to harvesting.

Memory-Harvesting VMs in Cloud Platforms

Workload Description Metric Memory
BA Business analytics queries [32] ~ Runtime 18 GB
KV Distributed key-value store [27] 99'” latency 32 GB
SQL Relational database [33] 95t" Jatency 16 GB
Search Serving index requests [31] 99t" Jatency 128 GB
Web 3-tier web application [11] Throughput 4 GB
ML Machine learning training [1] Runtime 64 GB

Table 1: Popular internal and external workloads in Azure.

(a) NUMA spanning (b) Small pages

50

40
30 1

20 A
104 il

B Ta Tl 0 PSS | P

Perf degradation (%)

Figure 4: Potential impact of (a) NUMA spanning and (b) small pages
on cloud workloads.

NUMA locality. Consider a scenario where the hypervisor grows
the memory of a MHVM on one of the NUMA nodes. A new VM
that arrives later may end up spanning because the MHVM is
occupying the optimal NUMA node. While techniques such as
virtio-balloon [17] can reclaim memory in a NUMA-aware manner,
these approaches cannot ameliorate the fundamental decrease in
locality when reclaiming memory from multiple VMs.

We quantify the potential impact of NUMA spanning by mea-
suring the performance of representative workloads derived from
Azure’s internal production workloads. Table 1 summarizes the
workloads and their key metrics. On a server with two NUMA
nodes, we manually force the VM hosting the workload to have
half of its memory in a remote NUMA node. We then run each
workload 5 times. Figure 4(a) shows that performance degrades by
up to 20% at the median point and almost 40% in one experiment
(SQL). Thus, NUMA spanning can have a substantial impact.
Large pages and memory fragmentation. While large page
performance is well studied [20, 35, 36], its interaction with memory
reclamation is less well so. Today, reclamation is typically done at
4KB granularity, without the ability to enforce a specific contiguity
requirement (2MB or 1GB). Therefore, reclaiming memory from
a VM with fragmented guest physical address space may lead to
fragmenting the host memory, which in turn prevents the host OS
from allocating large or huge pages for new incoming VMs.

Figure 4(b) shows the performance loss when running workloads
on a VM with fully fragmented second-level mappings (i.e., all 4 KB
pages). The performance of SQL suffers severely, but all workloads
(except Search) see some impact showing that fragmentation is
highly undesirable for cloud workloads.

4.3 Techniques to tackle harvesting challenges

We propose 4 techniques for addressing the above challenges: ex-
pediting evictions, reserving a memory buffer, balancing across
NUMA nodes, and reclaiming large pages.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

t || vm1 vm2 | % i MHVM
Sl
t| vmL o [i% i MHVM
) & ''''''''''
E t, || vM1 VM3 %, MHVM
ty || vM1 VM3 vM4|| MHVM
t, || vm1 VM3 VM4|[VM5
<>
Memory

Figure 5: A MHVM dynamically changing size over time.

Expediting evictions. Harvest VMs get a warning (e.g., 30 seconds
in advance), if their minimum size is needed for new regular VMs.
To keep creation time low, we may have to evict a MHVM more
aggressively if the MHVM (1) does not return enough memory, (2)
does not return memory fast enough, (3) does not return contiguous
and aligned (2 MB) memory, or (4) does not return memory from
the right NUMA node. In these cases, we immediately evict the
MHVM to make room for a regular VM. If the VM being created
is also low-priority (e.g., a spot VM), we wait longer for a pending
reclamation, before evicting the MHVM.

Reserving a memory buffer. To minimize regular VM creation
time, we reserve a buffer of unallocated memory that cannot be
harvested. Memory for a new VM can come from the buffer. How-
ever, if the buffer is not large enough for the VM, we still have to
reclaim the difference from the MHVMs. For example, if we have
a buffer of 16 GB and need to create a 24 GB VM, we will seek to
reclaim 8 GB of memory. The buffer is replenished by reclaiming
additional memory from the MHVMs off the critical creation path.
Balancing across NUMA nodes. To minimize NUMA spanning
we (1) leverage the memory buffer, and (2) create MHVMs with a
virtual NUMA topology and selectively assign and reclaim memory
from specific NUMA nodes. The buffer reserves unallocated mem-
ory across all NUMA nodes evenly. This maximizes the likelihood
that regular VMs will be fully backed by single NUMA nodes.
Reclaiming large pages. If MHVMs are allowed to return small
(4 KB) pages when shrinking, this may lead to fragmentation of the
host physical memory, which in turn may lead to regular VMs being
assigned small pages. For this reason, we require from all MHVMs
to return contiguous large pages. If the guest physical memory
is fragmented, the memory manager will trade pages to honor
the large page contiguity requirement, which directly impacts the
reclamation speed. If for some reason the guest is not able to reclaim
memory, we evict it and release its full memory. To avoid speed
degradation and evictions, at boot time we create a special memory
partition to isolate the memory used by the harvesting framework
from the rest of the system (e.g., daemons and guest OS) inside of
MHVM. This isolation ensures that the MHVM can more easily
free up contiguous large ranges (without expensive trading) to be
reclaimed by the host. We implement this approach for Windows
guests but it applies to other guests like Linux.

Example. Figure 5 shows a server with 256 GB of memory. It hosts
2 regular VMs with 64 GB each. At tp, a MHVM with a minimum of

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

64 GB lands on the server. There are 64 GB of unallocated memory
and as we leave a buffer of 32 GB, the MHVM grows to 96 GB. At
t1, VM2 finishes and the MHVM grows to 160 GB (still leaving the
buffer of 32 GB). At t2, VM3 with 96 GB lands on the server and
the MHVM shrinks to its minimum (i.e., 64 GB). To make room for
the 96 GB, we use the 32 GB of the buffer and have to wait for the
MHVM to return the remaining 64 GB. Without the buffer, VM3
would have to wait for the MHVM to return the full 96 GB. At t3,
VM4 with 32 GB lands on the server, consuming the full buffer. At
tq, VM5 with 32 GB lands in the server and the MHVM needs to be
evicted to make room.

4.4 Optimizing memory resizing

Besides the above techniques, we optimize the memory resizing
process by modifying the resizing driver in the guest OS, modifying
the memory allocator in the hypervisor, and introducing a commu-
nication path between the host and MHVMs. We fully implement
our optimizations for Windows guests but the same approach can
be implemented for other guests (e.g., Linux) as well.
Pre-reclamation. When the hypervisor asks the guest OS for a
chunk of memory, our guest driver starts reclaiming additional
chunks (e.g., 128 MB) in the background. If there are no requests
for a period of time (e.g., 1 second), we return this pre-reclaimed
memory back to the guest’s memory manager. This approach gives
the guest extra time to obtain large free pages, directly improving
reclamation bandwidth.

Batch size. Reclaiming memory is a synchronous process between
the host and the guest, where the host asks for one small chunk of
memory at a time. To reduce the time to reclaim larger amounts of
memory, we allow requesting larger, multi-GB chunks.
Application notification. In the default setting, the harvesting
manager monitors how much memory is available at each point in
time and adjusts applications accordingly. This reactive approach
may not be efficient. To improve this, we introduce a paravirtual
interface [29] where the host can notify the MHVM of the target
memory size prior to requesting actual memory. This way, ap-
plications can adjust to the final target size, instead of adjusting
incrementally after each batch. We find that the proactive approach
replenishes the large page cache in the guest OS faster, making
these pages readily available to the hot-remove driver.

Multiple MHVM:s per server. We allow creating multiple MHVMs
per server. The distribution of the harvested resources is propor-
tional to the minimum sizes. For example,a MHVM with a minimum
size of 32GB will harvest double the memory of a 16GB one (capped
by the maximum specified by the user). Note that multiple MHVMs
in the same server improves the overall reclamation throughput, as
we can reclaim their memory in parallel.

4.5 Other considerations

Harvesting allocated but unutilized memory. The ability to
harvest memory that is allocated to regular VMs but not currently
utilized would increase the pool of harvestable memory. However,
returning memory back to a regular VM may not be fast enough to
avoid violating the strict service-level agreement for regular VMs.
Also, resizing regular VMs is not acceptable, as the guest will see
less memory, while transparently backing on demand can lead to

Fuerst et al.

serious performance consequences. A potential solution would be
for VMs to explicitly give up memory that they know they will not
need for a while, and request it back in advance of their use. We
leave this option as future work.

Pricing. Though a detailed discussion of pricing schemes is beyond
our scope, we expect MHVMs to be treated the same as Harvest
VMs [4]. Specifically, we charge for the minimum size as a standard
evictable VM of equal size. Users pay a discounted price (i.e., by an a
factor) on the additional harvested resources beyond the minimum.
We tie together cores and memory at the minimum size ratio and
charge for the minimum of the two. With this pricing, harvesting
both cores and memory is always beneficial.

Privacy and confidentiality. On individual servers, MHVMs re-
veal the VM arrival and departure events. However, they do not
reveal the platform’s resource utilization, unless the attackers are al-
lowed to deploy MHVMs to most servers. To avoid this, the platform
can enforce a quota for MHVMs in each region. The privacy of the
workloads is also protected, as MHVMs do not have any visibility
into co-located VMs (memory zeroed out by the hypervisor).
Other techniques. Second-level paging by the hypervisor to swap
space or a remote server could be done to reclaim memory. [14] does
this when cooperative memory trading cannot happen. However,
cooperative memory trading on the same node involves less perfor-
mance jitter (no I/O interrupts and no second-level page faults) and
is much more efficient than paging to swap space or a remote node.
With second-level paging, the application will experience sudden
performance degradation, while in memory harvesting as the VM
is being resized, the framework adjusts accordingly, leading to less
jitter for the application. Importantly, transparent second-level pag-
ing requires the ability to properly handle direct memory access
by I/O devices. This technology [37] is not fully supported by the
majority of I/O devices and lacks full system software support.

5 MEMORY-HARVESTING APPLICATIONS

Target applications. When operating on harvested resources,
performance can be unpredictable because the amount of resources
available for harvesting depends on load conditions external to the
VM,; a harvesting VM might even be evicted altogether. For these
reasons, harvesting is a good match for batch-style workloads or
applications that have loose performance requirements. Workloads
that run in frameworks like Hadoop (e.g., ML training [47], big-
data analytics) and FaaS (e.g., background event processing, data
ingestion) often have those characteristics. In terms of memory
harvesting specifically, workloads that can use as much memory as
available for caching (e.g., databases [33], distributed caches [27])
should significantly benefit. However, even these workloads must
be able to tolerate the potential variability in cache sizes [41]. Prior
work has explored resource and availability SLOs that reduce the
unpredictability associated with resource harvesting [4, 7].

Conversely, workloads with strict performance requirements
are not good matches for resource-harvesting VMs. Certain ap-
plications might also be difficult to modify to take advantage of
harvested resources. For example, workloads with limited paral-
lelism or that optimize for memory amount and placement might
not be good targets.

Memory-Harvesting VMs in Cloud Platforms

Having to re-engineer legacy applications for harvesting is a

main reason why we focus on modifying SaaS, PaaS, and FaaS
frameworks that can hide those complexities. To demonstrate this,
we extend a PaaS (Hadoop) and a FaaS (Azure Functions) framework
to adapt them to MHVMs.
Memory-harvesting Hadoop. MH-Hadoop is our extension of
Harvest Hadoop [4], which is being successfully used in production.
In addition to the core changes, the harvesting manager notifies
cluster-wide Resource Manager (RM) of the changes in memory size.
The RM then adjusts the number of containers on the server accord-
ingly. When less memory is available to the MHVM, the RM stops
sending it new containers, and drains the running containers (waits
until they complete) in the MHVM until it is within the memory
budget. To avoid expedited evictions, if the draining is taking too
long, MH-Hadoop may kill some of the most recently started con-
tainers. The RM also stops sending containers to soon-to-be-evicted
MHVMs and treats an unexpected eviction the same as a server
failure. Any running containers that get killed are later restarted
by the RM. This mechanism is already part of Hadoop [52, 53]. One
could also use other mechanisms like interruptible tasks [13].

Note that Hadoop hosts a variety of batch-style workloads that
are often run on Spot VMs. Hadoop also often underlies Spark [54]
and MH-Hadoop can run more or larger Spark executors depending
on the harvested memory. For example, the ML workload in Table 1
which uses TensorFlow [1] runs on Hadoop.
Memory-harvesting FaaS. Serverless frameworks have already
been adapted to run on Harvest VMs [58]. However, harvest-
ing memory requires additional extensions. We build memory-
harvesting FaaS (MH-FaaS) as an extension to Azure Functions [30].
The offering is similar architecturally to OpenWhisk [34], and
consists of a controller that forwards function invocations to the
MHVMs. Each MHVM runs an invoker that executes the function
invocations in containers.

In our MH-FaaS, each harvesting manager notifies the controller
of the changes in cores and memory, so the controller can distribute
function invocations across the MHVMs accordingly. The controller
stops sending invocations to MHVMs that are shrinking, while
the invoker drains currently running containers and (if necessary)
destroys idle containers that are simply waiting for other invoca-
tions [15, 42]. The controller also stops sending new invocations
to soon-to-be-evicted MHVMs and treats unexpected evictions as
failures. FaaS runs short-duration functions in relatively small con-
tainers [42]. Thanks to memory harvesting, MH-FaaS can maintain
a larger function instance cache and reduce cold starts [58].

6 EVALUATION
6.1 Methodology

Workloads. In our experiments, the regular VMs host the common
cloud applications presented in Table 1. These applications run in
both Windows (Windows Server 2016 and 2019) and Linux (Ubuntu
18.04 and 20.04). To evaluate the performance degradation caused
by harvesting, we monitor their key performance metrics in three
scenarios: (1) with an idle MHVM which represents the best case, (2)
with a MHVM running a CPU bully application which represents
the worst case, and (3) with MH-Hadoop running in the MHVM
which represents the common case. The bully application saturates

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

[Ballooning
T E== Hot-remove

o T e

=

Batch size: 1GB
Pre-reclamation

Figure 6: Ballooning in Windows Server 2019 is slightly better than
the hot-remove; both can be improved with driver pre-reclamation
and large batch sizes.

Throughput (GB/s)

Batch size: 128MB Batch size: 1GB

every virtual CPU while using very little memory. MH-Hadoop runs
MapReduce jobs with many memory-hungry map workers. These
applications run on Windows Server 2019. We also run MH-Faa$
on Ubuntu 20.04.

Servers. Our experiments run on production servers with 2 NUMA
nodes, each with 20 cores for a total of 80 logical (hyper-threading)
processors, and 512 GB of memory. We reserve 64 GB to run the
server agents (including our MHVM code) and reserve 224 GB
per NUMA node just for VMs. For the hypervisor, unless stated
otherwise, we use Hyper-V from Windows Server 2019 [28].

6.2 Memory harvesting mechanism

We start with synthetic experiments to evaluate all the changes that
MHVMs could potentially see in production. Once we instantiate
a MHVM, our benchmarking setup programmatically adjust its
memory allocation, measuring the time to complete the resize, or if
it was unsuccessful. This level of control allows us to capture key
metrics such as memory fragmentation and NUMA locality.
Sensitivity to the MHVM size. We take idle MHVMs and shrink
them using hot-remove from 128, 96, 64, 32 and 16 GB of RAM to 96,
64, 32, 16, 8 and 4 GB. The reclamation throughput of just above 4
GB/s is consistent across resizes. Resizing to smaller memory sizes
(e.g., 4 GB target) is marginally slower as there is so little memory
in the VM that it takes longer for the guest to reclaim each batch.

Interestingly, reclamation throughput scales linearly in the num-
ber of VMs. When we are reclaiming memory from 4 MHVMs in
parallel, the reclamation throughput increases 4. Such increase in
throughput is because the reclamation from each individual VM is
performed by a separate host worker. On the other hand, adding
memory through hot-add is much faster and is higher than 40 GB/s.
From now on, we focus on the throughput of shrinking a MHVM,
because it is on the critical path when launching new VMs.
Sensitivity to the host OS and guest driver changes. Run-
ning reclamation using the same server with the Hyper-V [28]
or KVM [22] hypervisors shows comparable results. We compare
Windows Server 2016 and 2019 with Ubuntu 18.04 and 20.04 run-
ning in the MHVM and the reclamation throughput is comparable.
The main differences come from the configuration of the recla-
mation driver running in the MHVM and how the host requests
memory from the guest.

Figure 6 shows the memory reclamation throughput depending
on the driver setting. The baseline hot-remove and ballooning show

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

- |

!

Q
)
)
5
a 31
=
(*)]
>
224
£ T F 1 1
g X |
@ 1+ =4 = MH-Hadoop Reactive == |dle
o = | = MH-Hadoop Proactive == Bully
0 T T T T T
8 16 24 32 40

Memory reclaimed (GB)
Figure 7: Memory shrinking throughput depending on the workload
running in the VM.

an average throughput of 4.4 GB/s and 4.6 GB/s, respectively. Hot-
remove is slightly slower as it requires updating the guest physical
address space on top of ballooning. However, from our experience
most users prefer hot-remove as they can track the memory size.
The figure also shows the impact of our optimizations using large
batch sizes and pre-reclamation. Hot-remove achieves 5.6 GB/s with
a batch size of 1 GB and 6.2 GB/s using both 1 GB batch size and
pre-reclamation of up to 2 GB.

Sensitivity to the workload. Figure 7 shows the throughput when
shrinking a MHVM running different workloads. As expected, the
idle VM achieves the best throughput with 4.25 GB/s, while the
CPU bully with 1.5 GB/s is the worst case.

To evaluate the benefit of the application notification mechanism,
we compare the performance of MH-Hadoop using notifications
(i.e., proactive) and adjusting memory incrementally based on the
amount of free memory (i.e,, reactive). The proactive resizing of
MH-Hadoop matches the throughput of the idle VM. This is because
MH-Hadoop releases all the reclaimed memory at once, ensuring
most of the memory is readily available ahead of each resize batch.
The reactive model does not perform nearly as well as it slowly
releases memory over time, leaving the driver with more work to
do when servicing resize requests.

Figure 8 shows the time to complete the MapReduce jobs in a
MHVM as a functions of the reclaimed memory size with multiple
strategies. Blind proactive does not monitor the actual memory
utilization and assigns a fixed percentage of the VM to MH-Hadoop
leading to the longest runtimes. The reactive model achieves higher
job throughput by pushing the memory limits of the system. Our
proactive approach combines these two and gets the benefits of
both, trying to maximize guest memory usage but shrinking on
demand upon a host notification. This gives us the best reclamation
throughput with the lowest performance impact on the workload.
Memory fragmentation. Memory fragmentation inside the
MHVM does not necessarily impact the reclamation bandwidth,
but it can have severe consequences for regular VMs if reclama-
tion is not done at large page granularity. Reclaiming large pages
is easier if the harvesting application releases memory in large
chunks. To confirm this, we run two identical workloads, forcing
MH-Hadoop to allocate large or small pages. Figure 9 shows the
process owning each of the 16M 4-KB pages in a 64-GB MHVM run-
ning the MH-Hadoop workload. This memory snapshot includes
the MH-Hadoop daemons, the containers running tasks, all other
processes, and the free pages that are ready to be reclaimed. The

Fuerst et al.
=} = Reactive
5 6001 . §- Proactive
L]
2 =§=Blind proactive ”
] ~
$ 4001
[}
E
€ 200 A
4
0 T T T T T

8 16 24 32 40
Memory reclaimed (GB)
Figure 8: Runtime of MH-Hadoop jobs when reclaiming memory
from a MHVM. The runtime increases as we reclaim more memory.
“Reactive” and “proactive” show similar performance.

1024 2048 3072 4096 0 1024 2048 3072 4096

C-11

)
o

hhUdbobm

A

3072

OHOOH(I)DOHOO

IS

o
&
=3
0]
=

Free

4096

Pages] VPagres
(a) Using 4-KB page allocations shrinking to 32 GB.
1024 2048 3072 1024 2048 3072 4096

Pages o — Pages

(b) Using 2-MB large page allocations shrinking to 32 GB.

Figure 9: View of the memory of a 64-GB MHVM running MH-
Hadoop with small and large pages. Each point is a 4-KB page and
its color indicates the owning process. Each square represents 1 GB
of memory (4KB x 512 X 512).

left side shows the starting point with MH-Hadoop running 14
tasks in 14 containers and taking the full 64 GB. This leaves only
46 MB and 36 MB free with (Figure 9(a)) and without large pages
(Figure 9(b)), respectively. We then reclaim 32 GB of memory from
the MHVM (right side), making MH-Hadoop reduce its memory
footprint and preempt 7 tasks. Without large pages, there are 35.9
GB of free memory of which 17.8 GB are contiguous 2-MB chunks.
Using large pages, there are 39.8 GB of free memory of which 22.9
GB are contiguous. Interestingly, 19 out of these 22.9 GB are 1-GB
aligned chunks while there are none using 4-KB pages. If we were
to reclaim 1 GB (i.e., huge pages), MH-Hadoop using large page
allocations would enable memory to be reclaimed much faster.

Memory-Harvesting VMs in Cloud Platforms

100
MHVM Size MHVM Size

. == 2CPUs 8GB == 2CPUs 16GB
R 801 = 4CPUs 16GB === 4CPUs 32GB

e == 8CPUs 32GB == 8CPUs 64GB

E 60 - = 16CPUs 64GB = 16CPUs 128GB
E == 20CPUs 80GB == 20CPUs 160GB
E 40 == 32CPUs 128GB I == 32CPUs 256GB
@ 48CPUs 192GB 48CPUs 384GB
>
T 201 —

[—— T — — —
0

0 6‘4 12‘8 1§2 256 350 3é4 44‘18 0 6‘4 158 léZ 2.;:6 3éO 3é4 44‘18
Buffer (GB) Buffer (GB)

Figure 10: Harvested memory varying the MHVM minimum size

and the buffer. MHVMs of 8 CPUs and 32 GB of memory harvest

around 20% of the unallocated memory with a buffer of 192 GB.

6.3 Cloud platform analysis

To evaluate harvesting at fleet scale, we use the Azure traces of
the servers characterized in Section 3. To model the reclamation
throughput and other characteristics, we use the results from the
previous set of experiments. To understand the effect of placing
MHVMs in the available space, we evaluate: (1) additional time
to create regular VMs, (2) amount of harvested resources, and (3)
forced NUMA spanning.

In this analysis, we assume that once a MHVM is placed, it can
grow up to 4X its minimum size. For example, a MHVM created
with a minimum of 4 cores and 32 GB of memory can grow all the
way to 16 cores and 128 GB.

Harvested memory. Figure 10 shows how much of the unallocated
platform memory we can harvest depending on the minimum size of
the MHVM and the buffer. MHVMs with 4 CPUs and 16 GB harvest
around 10% of the platform memory with a buffer of 256 GB. This
amount of unallocated memory harvesting at fleet scale means
a significant efficiency improvement and an additional source of
revenue for the cloud platform. Without any buffer, we harvest the
most memory and the larger the buffer is, t