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ABSTRACT
Function-as-a-Service (FaaS) has become an increasingly
popular way for users to deploy their applications with-
out the burden of managing the underlying infrastructure.
However, existing FaaS platforms rely on remote storage
to maintain state, limiting the set of applications that can
be run efficiently. Recent caching work for FaaS platforms
has tried to address this problem, but has fallen short: it
disregards the widely different characteristics of FaaS appli-
cations, does not scale the cache based on data access pat-
terns, or requires changes to applications. To address these
limitations, we present Faa$T, a transparent auto-scaling
distributed cache for serverless applications. Each applica-
tion gets its own cache. After a function executes and the
application becomes inactive, the cache is unloaded from
memory with the application. Upon reloading for the next
invocation, Faa$T pre-warms the cache with objects likely to
be accessed. In addition to traditional compute-based scaling,
Faa$T scales based on working set and object sizes to man-
age cache space and I/O bandwidth. We motivate our design
with a comprehensive study of data access patterns on Azure
Functions. We implement Faa$T for Azure Functions, and
show that Faa$T can improve performance by up to 92% (57%
on average) for challenging applications, and reduce cost for
most users compared to state-of-the-art caching systems, i.e.
the cost of having to stand up additional serverful resources.
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1 INTRODUCTION
Motivation. Function-as-a-Service (FaaS) is an increasingly
popular way of deploying applications to the cloud. With
FaaS, users deploy their code as stateless functions and need
not worry about configuring or managing resources explic-
itly. FaaS shifts these responsibilities to the provider (e.g.,
AWS Lambda, Azure Functions, Google Cloud Functions),
which charges users per resource usage during their function
invocations. FaaS providers build their platforms by renting
and managing resources (VMs or bare-metal containers) in
public clouds (e.g., AWS, Azure, Google Cloud Platform). To
control their costs, these providers proactively unload a func-
tion from memory if it has not been invoked for a while (e.g.,
after 7 minutes of inactivity in AWS Lambda [50]).

Due to FaaS’s stateless nature, a function invocation is not
guaranteed to have access to state created by previous invo-
cations. Thus, any state that might be needed later must be
persisted in remote storage. This also applies to applications
with multiple stages (often expressed as a pipeline or a di-
rected acyclic graph of functions), with intermediate results
passed between invocations. Since existing FaaS platforms
1Romero (faromero@stanford.edu) was an intern at Microsoft Research.

https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1145/3472883.3486974


SoCC ’21, November 1–4, 2021, Seattle, WA, USA Romero et al.

typically do not allow functions to communicate directly,
functions must also write these results to remote storage.
The remote storage can be object-based (e.g., Ama-

zon S3 [2], Azure Blob Storage [37]), queues [8], or in-
memory storage clusters (e.g., Redis [47], InfiniCache [56],
Pocket [34]). Regardless of type, remote storage incurs higher
latency and lower bandwidth than accessing local mem-
ory [26, 34]. When users have to provision in-memory stor-
age clusters, it introduces management overhead and costs.

Given these limitations, local in-memory caching emerges
as a natural solution for both speeding up access to re-
mote data and enabling faster data sharing between func-
tions. Prior works have considered both local and remote
in-memory caching for FaaS [34, 45, 53, 56] but, we argue,
have come up short in multiple ways.
First, prior work has shown that FaaS applications vary

widely in their invocation frequency, e.g. 45% of applica-
tions are invoked less frequently than once per hour on
average [48]. Thus, caching data for rarely-invoked appli-
cations at all times is wasteful. However, not caching data
for these applications will likely produce poor performance.
Prior systems implement a single cache for multiple or all
applications, which given these characteristics, requires com-
plex communication and synchronization primitives for the
data of thousands of applications.
Second, in prior approaches, the cache is either fixed in

size (e.g., [45, 56]) or scales only according to the computa-
tional load (e.g., [53]). These approaches work well when
data access patterns are stable and working sets are smaller
than the available cache space. When this is not the case,
scaling the cache based on data access patterns would be ben-
eficial. Moreover, prior works have not considered scaling as
a way to mitigate the impact of accessing large data objects;
these objects can take long to access as remote storage I/O
bandwidth is often limited by the underlying VM/container
or contention across co-located applications [26]. Emerging
FaaS applications, such as ML inference pipelines and note-
books, would benefit from scaling out for increased cache
space and increased I/O bandwidth to remote storage.
Third, prior caches are not entirely transparent to users,

either because users need to provision them explicitly
(e.g., [34, 45]) or because they provide a separate API for
users to access the cache (e.g., [51, 53]). FaaS users do not
want to think of data locality or manage caches (or any other
resources) explicitly. In fact, a key reason for the popularity
of FaaS is exactly that users are relieved from such tasks.
Our work. In this paper, we propose Faa$T, an in-memory
caching layer for FaaS applications that is itself serverless,
i.e. tied to applications, auto-scaling, and transparent.
Each application is loaded into memory with its own lo-

cal cache. This cache manages the data accessed by the ap-
plication transparently as it runs. When the application is

unloaded from memory, its Faa$T is also unloaded. This
approach obviates the need for a remote in-memory cache
and may reduce the overall traffic to remote storage, both
of which reduce costs for users. It also means that the cache
space required by rarely-invoked applications is proactively
removed from memory when not needed, just as the ap-
plication itself, which reduces costs for the FaaS provider.
Moreover, it enables different cache replacement and persis-
tence policies per application, and pre-fetching of the most
popular data when (re-)loading each application. The latter
feature can be very effective when combined with automatic
pre-warming of applications, which can be done accurately
and completely off the critical invocation path [48].

As in other systems, an application is auto-scaled based on
the number of invocations it is receiving. Scaling out loads
a new application “instance” (i.e., a copy of its code) into
memory, whereas scaling in unloads an instance. We refer
to this as compute-based scaling. However, to match each
application’s data access and reuse patterns, Faa$T automat-
ically scales out the number of instances to (a) increase the
fetch bandwidth from remote storage for large objects, and
(b) increase the overall cache size for frequently-accessed
remote data. Scale-in occurs as the need for space and/or
bandwidth subsides. With multiple active instances, Faa$T
forms a cooperative distributed cache, i.e. a data access can
hit locally, miss locally but hit a remote cache, or miss both
locally and remotely. By default, Faa$T offers strong data
consistency, but each application can optionally select its
own consistency and policies for scaling and eviction.

A key aspect of FaaS is that users are only charged for re-
sources they use. As we tie Faa$T to applications, we expect
that FaaS providers would charge only for cache accesses
and space consumed by objects that were actually accessed.
Implementation and results. Wemotivate Faa$Twith the
first comprehensive study of real FaaS applications from the
perspective of data access and reuse. We use data collected
for 2 weeks from the production workload of Azure Func-
tions. We show, for example, that many infrequently invoked
applications exhibit good temporal locality (the same data is
accessed across relatively rare invocations), whereas spatial
locality in large objects is high (if any byte from such an
object is accessed, the rest of it should be pre-fetched).
We implement Faa$T for Azure Functions. To show it

enables new applications that are not efficiently supported
by current FaaS platforms, we implement an ML inference
pipeline and a Jupyter notebooks [32] server stack that runs
unmodified notebooks in a serverless environment.

Our experiments with these applications evaluate Faa$T’s
caching and scaling policies. Our results show that Faa$T can
improve their performance by up to 92% (57% on average),
and reduce costs for most users compared to state-of-the-art
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Figure 1: Distribution of the size of ac-
cessed blobs. 80% of accessed blobs are
smaller than 12KB.
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Figure 2: Application CDF of the number
of function invocations per unique blob.
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Figure 3: IaT CoV and number of invoca-
tions for each blob accessed more than
three times. CoV of 1 is Poisson arrival.

FaaS caching systems, i.e., the cost incurred by the provision-
ing of additional serverful resources.
Contributions. In summary, our main contributions are:
• We characterize the data access patterns of Azure Func-
tions. We release a sanitized version of this dataset at [6].
• We design and implement Faa$T, a transparent auto-
scaling cache for FaaS applications that is itself serverless.
• We propose scaling policies for Faa$T to increase instance
bandwidth and overall cache size based on data access pat-
terns and object sizes.
• We show that Faa$T broadens the scope of applications
that can run on FaaSwith near-native performance, including
ML inference pipelines and Jupyter notebooks.

2 FAAS APPLICATIONS AND CACHING
This section characterizes the invocation and data access pat-
terns of applications running on a production FaaS offering.
An application is a collection of logically-related functions.
Each instance of an application gets a set of resources (e.g.,
memory in a VM or container) that is shared by its func-
tions. We focus on data accesses, as several prior works
have focused on code accesses to optimize cold-start laten-
cies [1, 13, 18, 40] or reducing the number of cold-starts [48].
We also discuss the limitations of current FaaS platforms for
existing and emerging applications.
2.1 Characterizing Current Applications
We deployed a new version of the Azure Functions runtime
to characterize blob storage accesses. We randomly sampled
a small percentage of applications that access remote blob
storage over HTTPS over a 14 day period (November 23𝑟𝑑 to
December 7𝑡ℎ 2020). This log spans 28 geographical regions,
includes 855 applications from 509 users, and 33.1 million
invocations with 44.3 million data accesses. 77.3% of accesses
are reads and the rest are writes. The applications are written
in multiple languages, including C#, Node.js, and Python.
With this paper, we are releasing an anonymized version of
this log at https://github.com/Azure/AzurePublicDataset.
Data size. The log includes accesses to 20.3 million differ-
ent objects with a total size of 1.9 TB. Figure 1 shows the
distribution of the size of blobs accessed. 80% of blobs are

smaller than 12KB and more than 25% are smaller than 600
bytes. However, there are also many large blobs; a few as
large as 1.8GB. The objects read tend to be larger than the
ones written. While the aggregate bandwidth to backend
storage is usually high [49], the prevalence of small objects
exacerbates the impact of storage latency.
Data accesses and reuse. Figure 2 shows the CDF of the
ratio of the number of invocations an application made to the
number of unique blobs accessed. Most applications access
a single, different blob per invocation (invocation/blob=1).
Roughly 11.0% of applications access more than one blob
per invocation (invocation/blob<1). More than 32.0% of the
applications access the same blob in more than one invoca-
tion and 7.7% in more than 100 invocations. One application
accesses the same blob in more than 10,000 invocations.
Around 11.8% of the applications access the same blob

across all invocations, 66.1% access less than 100 different
blobs, 93.0% access less than 10,000 different blobs, and one
accesses more than 8 million different blobs. Even though
there are 44.3 million accesses, only 20.3 million are first
accesses. Overall, the applications accessed 2.6 TB of data
while the corpus of unique data is 1.9 TB. If we were able to
cache the already accessed data, we could save up to 27.0% of
traffic and 54.3% of the accesses to remote storage.
Data sharing across applications and users (not shown)

is extremely uncommon. 99.7% of the blobs are not shared
across applications, only 0.02% of blobs are shared across
regions, and only 16 blobs across users.
Temporal access pattern. Figure 3 shows the temporal
access patterns for each blob accessed by an application. The
X-axis is the number of function invocations that read/wrote
the blob and the Y-axis shows the coefficient of variation
(CoV) for the inter-arrival time (IaT) of those invocations.
Each point represents a blob with more than 3 accesses (there
is no IaT CoV otherwise). A CoV of 1 suggests Poisson ar-
rivals, values close to 0 indicate a periodic arrival, and values
larger than 1 indicate greater burstiness than Poisson. Clearly,
accesses to a large percentage of blobs are bursty.
Access performance. We observe writes are usually faster
than reads, since writes are buffered and do not require

https://github.com/Azure/AzurePublicDataset
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Data size Large Large Large Large Small Small Small Small
App. invoc. freq. Frequent Rare Frequent Rare Frequent Rare Frequent Rare

Data reuse Low-med Med-high Med-high Med-high Low Med Low-med Low
Example

application
Video

streaming
Jupyter
notebook

ML inference
(pipeline)

Distributed
compilation

Log
aggregator

Software
unit tests

ML inference
(single model)

IoT
sensors

Table 1: FaaS application spectrum. Applications vary in data size, invocation frequency, and data reuse.

Features/Properties Pocket [34] InfiniCache [56] Locus [45] Faasm [51] Cloudburst [53] OFC [39] Faa$T

Cache location Storage cluster Separate function Redis cluster Host cache VM cache RAMCloud server Invoked function
Cached data management Independent of app Independent of app Independent of app Independent of app Independent of app Unloaded w/ app Unloaded w/ app
App transparency Get/Put Get/Put No changes∗ Custom API Custom API No changes No changes
User configuration Hints Num instances Redis None None None None
Data consistency None None None Supported Supported Supported Supported
Object pre-warming None None None None None None Automatic
Compute cache scaling N/A N/A N/A Dynamic Dynamic Dynamic Dynamic
Cache size scaling N/A None None None None Dynamic Dynamic
Cache bandwidth scaling N/A None None None None None Dynamic

Table 2: Existing caching systems and their properties. Green indicates supported/enabled. Tan indicates limited support, or
limitations in what can be enabled. Red indicates not supported/enabled. For Locus, ∗ indicates the application transparency is
limited to applications with a shuffle operation.

persisting data across all replicas synchronously. Reads are
slower as we have to wait for the storage layer to deliver all
data. Furthermore, smaller blobs have a lower throughput as
they cannot amortize the overhead of the initial handshake.
Diverse invocation patterns. Consistent with prior
work [48], our log shows that 80% of functions have less
than one invocation per minute on average and less than
15% of applications account for 99% of the invocations. This
heterogeneous invocation behavior is a challenge, as caching
data for rarely-invoked applications can be wasteful but is
necessary, as it affects a large number of users.
Takeaways and requirements. Our characterization indi-
cates that many FaaS applications exhibit data reuse: more
than 30% of them access the same data across invocations.
This suggests that caching can be effective for them. More-
over, the characterization shows a wide spectrum of accessed
data sizes and invocation frequencies. Accessed data sizes
span almost 9 orders of magnitude (from several bytes to
GBs), i.e. large objects cannot be overlooked. Function invo-
cation frequencies also span almost 9 orders of magnitude,
i.e. rarely-invoked applications cannot be overlooked.
Table 1 illustrates the spectrum of data sizes, invocation

frequencies, and reuse along with some example applica-
tions. For instance, distributed compilation of the Chromium
browser requires accesses to hundreds of MBs, but happens
only a few times per day using a framework like gg [19]. Data
reuse across compilations is high since the codebase does
not change fast. In contrast, serving an IoT sensor involves
a small dataset, rare invocations, and low reuse.

We draw three key requirements for a serverless caching
layer. First, it should ensure that data with good temporal

locality is cached and reused across invocations (R1). Sec-
ond, the caching layer should target both frequently- and
rarely-invoked applications (R2). It should optimize for data
reuse for frequently-invoked applications, while it should
have the ability to pre-warm frequently-accessed objects for
rarely-invoked applications. Finally, the caching layer should
accommodate large objects and exploit spatial locality for them
(R3). These requirements must be satisfied for applications
written across various programming languages.

2.2 Existing Caching Systems Limitations
Table 2 lists the characteristics of several caching systems.
Caching is managed independently of each application.
Except for OFC, all the systems listed include a separate
caching or storage infrastructure that is shared by multiple
applications. (Cloudburst and Faasm also have a shared cache
on the same hosts/VMs that run the functions.) Because of
this, either usersmustmanage the extra servers or cache state
is left behind when applications are unloaded from memory.
In the former case, user costs and management overheads
are greater, whereas in the latter the FaaS provider costs are
higher. Thus, a serverless caching layer should be tied to each
application, so that its code and data can be loaded/unloaded
based on the application’s invocation pattern (R4).
Need system configuration or application changes.
Pocket, InfiniCache, and Locus rely on user configuration to
maximize performance and minimize cost. For example, In-
finiCache users must statically set the number of data shards
and functions to store them, whereas Locus users must con-
figure a Redis cluster. Faasm and Cloudburst rely on custom
APIs to give applications control over the consistency of their
data, and to pass messages between functions. To retain the
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simplicity of the FaaS paradigm, the caching layer should be
transparent and not require changes to the application (R5).

Cloudburst additionally requires its key-value store (Anna
[57]) to track all objects residing in all caches. Managing this
muchmetadata can lead to scaling limitations and extra costs.
The caching layer can mitigate these concerns byminimizing
metadata management for each cache instance (R6).
Compute-based scaling only. Finally, while some exist-
ing systems do not dynamically scale their caches (Pocket,
InfiniCache, Locus), others do so based solely on the amount
of offered computational load, i.e. number of function invo-
cations (Faasm, Cloudburst). OFC scales based on the compu-
tational load and predicted memory usage of cached objects.
However, it limits its caching to objects smaller than 10MB.
As applications become more complex and data-heavy, data
access characteristics like large working sets or large objects
will gain in importance. Thus, the caching layer should scale
compute (as the application’s offered load varies), cache size
(based on the data reuse pattern), and bandwidth to remote
storage (based on the object sizes being accessed) (R7).

2.3 Enabling New FaaS Applications
Current FaaS platforms limit the set of applications that can
be efficiently run. Next, we describe two challenging ones.
ML inference pipeline. Many applications across several
domains (e.g., health care [29] and advertisement [23]) de-
pend on ML inference for various prediction tasks. ML in-
ference load patterns can vary unpredictably [46, 58], which
makes FaaS on-demand compute and scaling an ideal match
for serving inference queries. However, ML inference appli-
cations require low-latency prediction serving (<1 s) [22, 46].
For example, AMBER Alert [36] responders may use an ap-
plication to perform car and facial recognition. This can be
deployed on a FaaS platform as a pipeline of ML models. For
each input image, a request is first sent to a bounding box
model function to identify and label all present objects. The
labeled image is uploaded to a common data store to trig-
ger the car and people recognition models. Both recognition
functions upload their outputs to the common data store.
To assess whether FaaS can meet low-latency require-

ments, we ran the AMBER Alert pipeline natively on a local
VM, and on Azure Functions with remote storage. Figure 4a
shows it is up to 3.8× slower running on FaaS versus natively,
while Figure 4b shows that the main reason is that 73.1% of
the time is spent loading the models. The inefficiency of the
storage layer makes it impossible for the FaaS platform to
run this application with sub-second latency.
Jupyter notebooks. Jupyter notebooks [32] are often used
for data science tasks such as data processing, ML modeling,
and visualizing results [43]. They are typically run by defin-
ing code in cells and interactively executing each cell. Jupyter
notebooks are typically backed by statically-allocated VMs.

Native FaaS
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(a) Native VM versus prod FaaS.

BBox Car People

Load PyTorch
Inference
HTTP+RPC
Data Dwld

(b) FaaS execution breakdown.

Figure 4: (a) Latency of AMBER Alert pipeline on a native
VM versus Azure Functions. Native VM does not include the
PyTorch (∼700MB) loading time. It is up to 3.8× slower to run
on FaaS. (b) Model run times (BBox is a bounding box model).
Data movement from/to remote storage dominates.

Depending on how often a notebook is run, the VMs may sit
idle for long periods. This is expensive for users and wasteful
for service providers. Furthermore, the amount of parallelism
and compute needed for each cell’s task can vary. Akin to
ML inference, this variability makes FaaS a strong fit.

To test its performance, we ported Jupyter to run on Azure
Functions — an application we term JupyterLess. Each cell
is executed as a function invocation and the state between
functions is shared through an intermediate storage layer.
We compare the execution time of summing a single 350MB
DataFrame column partitioned into 10 chunks with Jupyter-
Less to running on a native VM. JupyterLess is 63× slower
than native VM execution as downloading the intermediate
state and DataFrame column from remote storage dominates
the execution time. Thus, JupyterLess cannot be run interac-
tively on existing FaaS frameworks.

3 FAA$T DESIGN
We design Faa$T as a transparent auto-scaling cache that
meets the requirements from Section 2. Faa$T caches objects
accessed during a function execution so they can be reused
across invocations (R1). It is built into the FaaS runtime with
no external servers or storage layers, so it can be transpar-
ently tied to an application (R4, R5) written in any of the
various supported languages. This also prevents data or re-
sources from being persisted beyond an application’s lifetime,
which can incur higher costs for FaaS providers. When an
application is unloaded from memory, Faa$T collects meta-
data about the cache objects, and uses it to pre-warm the
cache with frequently accessed objects when the application
is re-loaded into memory. This is especially important for
applications that are rarely-invoked (R2).

Faa$T scales along three dimensions (R7): (a) based on
an application’s invocations per second (compute scaling),
which benefits applications that are frequently-invoked; (b)
based on the data reuse pattern (cache size scaling), which
is beneficial for applications with large working sets whose
objects are continuously evicted; (c) based on the object
size (bandwidth scaling), which is beneficial for applications
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Figure 5: Faa$T’s architecture diagram.

that access large objects (≥10MB) and are limited by the
I/O bandwidth between the application instance and remote
storage (R3). While an application is loaded, Faa$T efficiently
locates objects across instances using consistent hashing
without the need for large location metadata (R6).

3.1 System architecture
Figure 5 shows the architecture of a FaaS platform with
Faa$T. Each application instance runs in a VM or container
that contains the FaaS runtime and the code for the ap-
plication functions. Faa$T instances, which we refer to as
cachelets, are a part of the runtime, caching data in mem-
ory. Each application instance has one corresponding Faa$T
cachelet. In addition, Faa$T forms a cooperative distributed
cache; an application’s Faa$T cachelets communicate di-
rectly to access data when necessary (Section 3.2). Similar
to Faasm, Faa$T maintains a single copy of cached objects,
which improves memory efficiency compared to existing
systems [39, 53, 56].
We designed Faa$T to be per-application as opposed to

a shared cache. While shared caches can multiplex applica-
tions to improve resource utilization, they suffer from the
following drawbacks. First, a shared cache requires complex
communication and synchronization primitives for the data
of thousands of applications (compared to tens of instances
for a single application with its own cache). This makes it
difficult to implement per-application management policies
and provide transparency without custom APIs [51, 53], es-
pecially given the diversity of application characteristics
and requirements (Section 2.1). Second, a shared cache with
traditional eviction policies (e.g. LRU) can lead to severe
unfairness among applications [44].
To find the location of an object, a Faa$T cachelet inter-

acts with the Membership Daemon, which determines the ob-
ject’s “owner” based on the current number of cachelets. The
owner is responsible for downloading/uploading the object
from/to remote storage. The Load Daemon collects cached
object metadata, and uses it to decide what data objects to
pre-warm when an application is loaded (Section 3.3). To pre-
vent interference with an application’s heap memory usage,

Applica�on

Func�on

Remote Storage

Applica�on

Func�on

Faa$T
Cachelet

Faa$T
Cachelet

LH RH

LM RM

Figure 6: Reads in Faa$T: local hit (LH), remote hit (RH), local
miss (LM), remote miss (RM). Solid lines indicate communi-
cation between the application, Faa$T instances, and remote
storage. Dashed lines indicate data movement.

the Memory Daemon monitors both function and cachelet
memory consumption. Finally, the Frontend load-balances
requests across the running application instances, and the
Scale Controller adds and removes instances based on metrics
provided by the FaaS runtime (Section 4).

3.2 Accessing and caching data
Reads. Figure 6 shows the four ways to read data. A local hit
finds the data cached in the local Faa$T cachelet. A local miss
occurs when the local Faa$T cachelet is the owner for the
object and does not currently cache the data. The cachelet
directly fetches the data from remote storage. A remote hit
occurs when the data misses the local cachelet but is found
in the owner’s cache. Finally, a remote miss occurs when the
access misses both the local cache and the owner’s cache.
The owner fetches the data from remote storage and caches
it locally. In all cases, Faa$T cachelets cache objects locally,
even if they are not the owners, for performance and locality.
Thus, a popular object will incur at most one remote hit
per cachelet, and local hits thereafter (besides the optional
consistency version check, described below).

Faa$T uses consistent hashing to determine object
ownership. We choose consistent hashing because (a)
it avoids having to track object metadata (e.g. list of
objects in each instance), and (b) it reduces rebalanc-
ing as instances are added/removed: on average, only
𝑛𝑢𝑚𝑂𝑏 𝑗𝑒𝑐𝑡𝑠/𝑛𝑢𝑚𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 need to be remapped [5, 33]. To
maintain transparency, the object namespace is the same as
that used by the remote storage service. This design choice
also enables efficient communication between cachelets,
which as observed by prior work [14, 19, 31] is beneficial for
applications such as ML training.
Writes. When the application needs to output data, Faa$T
writes through to the owner cache. The instance executing
the function sends the data to the owner cache, which then
writes it to remote storage. This guarantees that the owner
always has the latest version that the application has written.
By default, the write happens synchronously to the owner
and synchronously to remote storage. This offers high fault
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Write Write Read
target mode target Performance Consistency FT
Storage Sync Storage Low Strong High
Owner Sync Owner Medium Strong Medium
Owner Async Owner Medium Eventual Medium
Owner Sync Local High Weak Medium
Local Sync Local High None Low
Local Async Local High None Low
Table 3: Performance, consistency, and fault tolerance (FT)
for different settings. By default, Faa$T writes to storage syn-
chronously, and reads the version from storage (first row).

tolerance while trading off performance, since applications
must wait until the write completes before proceeding with
their execution. Applications can optionally configure Faa$T
to write asynchronously or not write to remote storage at
all. Because Faa$T is tied to each application, different appli-
cations can use different policies at the same time.
Consistency. Table 3 summarizes Faa$T’s read/write set-
tings, and the performance, consistency, and fault tolerance
(FT) they achieve. By default, when reading an object, Faa$T
first verifies the version in the cache matches the one in
remote storage. From our measurements with Azure Blob
Storage, verifying the version from remote storage takes less
than 5ms (compared to 10ms and 500ms for retrieving a 4B
object and 35MB object, respectively). If the version matches
(the common case), no object is retrieved. This verification,
combined with synchronous writes to remote storage, offers
strong consistency (first row of Table 3). This default pro-
vides the same fault tolerance with better performance than
the production FaaS platform.
Given the latency of verifying the version, some applica-

tions may be willing to trade off consistency for performance
(e.g., ML inference). For those applications, Faa$T can read
any cached version and write asynchronously to remote
storage. This weakens its fault tolerance, and provides only
eventual consistency. Applications can also completely skip
writing to remote storage and rely on the distributed cache.
In Section 6.6, we quantify the performance and consistency
impact of these settings.

3.3 Pre-warming data into Faa$T
To pre-warm future cachelets, Faa$T records metadata about
the cache, off the critical path, when the Frontend unloads the
application. This includes the size of each cached object, its
version, its number of accesses of each type (e.g., local hit or
if it was produced as an output), and its average inter-arrival
access time. We timestamp each metadata collected with the
unload timestamp to capture the state history of the cachelet.
As we describe next, this is necessary for applications that are
rarely-invoked (e.g., once per hour), since their data access
pattern cannot be determined by a single invocation.

Faa$T needs to decide when to load an application into
memory. For this, the Frontend leverages a previously-pro-
posed hybrid histogram policy [48]. The policy tracks the
idle times between invocations of an application in a his-
togram. When the application is unloaded, the Frontend uses
the histogram to predict when the next invocation is likely
to arrive, and schedules the reload of the application for just
(e.g., 1 minute) before that time. Our approach would work
with any other cold-start prevention policy as well.

At this point, Faa$T needs to decide what data objects
should be loaded into the new cachelet. To do so, it collects
and merges the metadata across all cachelets over a pre-set
period of time. The period of time is based on the applica-
tion’s invocation frequency, which is determined using the
hybrid histogram policy. Next, Faa$T determines the objects
to be loaded using the following two conditions. First, if an
object’s local or remote cache hit rate is greater than a thresh-
old, the object should be loaded. This indicates that the object
has temporal locality. Second, if an object is accessed more
than once across the merged metadata, the object should be
loaded. This benefits rarely-invoked applications by loading
objects accessed across unload/load periods (e.g., an ML infer-
ence application’s model and labels). Once the objects to be
loaded are determined, the Faa$T cachelet loads the objects
that it owns based on consistent hashing (Section 3.2).

To avoid competing with on-demand accesses, Faa$T pre-
warms the cache only when the application is not executing,
i.e. before an invocation arrives or right after a function
execution ends. If we cannot avoid a cold-start invocation,
the only data that is loaded into the cache is its inputs.
For the AMBER Alert pipeline described in Section 2.3,

pre-warming improves performance by 58% over the hybrid
histogram policy and 74% over a cold-start. We evaluate its ef-
fectiveness for applications run in production in Section 6.2.

3.4 Evicting application data from Faa$T
The memory capacity of each application (and thus Faa$T)
cachelet is set by the provider (typically a fewGBs). Cachelets
do not consume any memory beyond that allocated to the
application. Each Memory Daemon monitors the memory us-
age of the function and the cachelet. When the memory con-
sumed by the function (i.e., heap memory) and the cachelet
(i.e., cached objects) is within a small percentage (i.e., 10%)
of the application’s total memory capacity, it evicts objects.

Eviction policies are often designed to cover the broad set
of applications that can run on the platform [9–11]. Instead,
as Faa$T is tied to an application, it can use per-application
eviction policies. Hence, the eviction policy can be kept simple
and tailored to an application’s data access pattern.

We implement two policies that we expect will work well
for many applications. The first (default) policy is a simple
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Least-Recently-Used (LRU) policy that prioritizes the evic-
tion of objects that are not owned by the evicting cachelet.
Only after these objects are evicted, does the policy consider
owned objects in LRU order. The second policy targets ob-
jects that are larger than a threshold (e.g., 12KB) and not
owned by the evicting cachelet. If there are not enough of
these objects, the policy evicts non-owned objects smaller
than the threshold. If we still need more capacity, we evict
owned objects that are larger than the threshold, before
resorting to LRU for the remaining ones. In both eviction
policies, targeting non-owned objects first increases remote
hits, but also minimizes local and remote misses.
Each of these eviction policies fits our emerging appli-

cations nicely. ML inference applications that exhibit high
invocation rates (e.g., frequently used recommendation mod-
els [24]) can quickly fill up a Faa$T cachelet’s capacity with
invocation inputs (e.g., images) and outputs (e.g., labeled
objects). Across invocations, only the model and labels are
typically reused; inputs and outputs change each time. Thus,
for ML inference and similar applications, the LRU policy is
sufficient, since the inputs and outputs will be evicted when
the cachelet’s capacity reaches its limit.
JupyterLess data objects can be classified into two types:

(a) small objects that maintain the notebook’s state (e.g., a
dictionary object) and (b) larger objects that are used for data
analysis (e.g., a DataFrame). A notebook’s state is typically
reused across invocations, and should thus be cached as
much as possible. Larger objects are reused less frequently
and can be replaced more aggressively. Thus, the second
policy (size-based) is appropriate.

Faa$T allows for future eviction policies beyond the ones
described above. For example, objects can be given a time-
to-live (TTL) and get evicted when the TTL expires.

3.5 Charging for Faa$T
When using Faa$T, we expect FaaS providers to charge users
only for the memory of the accessed data and not all the
cached objects. FaaS providers should also not charge for
pre-warming metadata in the same manner that they do not
charge for function metadata (e.g. function registration).

4 SCALING FAA$T
FaaS platforms typically include a Scale Controller that scales
applications in/out (Figure 5). As it is part of the front-end
component, the Scale Controller monitors the end-to-end
performance and the load offered to each application. It also
periodically queries the FaaS runtime running each applica-
tion instance for a vote on how many more instances to add:
a positive number means a vote to scale-out and a negative
number means a vote to scale-in. Based on the information
for an application, it makes a scaling decision and effects it.
Faa$T extends this mechanism by including cache-specific

metrics when deciding on how to vote. We also extend the
Scale Controller to accept unrequested votes when scaling is
needed immediately.When the controller adds or removes an
application instance, Faa$T reassigns the objects’ ownership
using the Membership Daemon’s consistent hashing.

Faa$T has three types of scaling:
Compute scaling. FaaS platforms scale the number of ap-
plication instances based on its rate of incoming requests, its
number of in-flight requests (queue sizes), and/or its average
response time. Degrading performance, high request rates,
or long queues cause scale-out; the opposite causes scale-in.
Since every application instance includes both compute and
caching resources, this traditional way of scaling is sufficient.
Cache size scaling. Faa$T also scales to match the applica-
tion’s working set size. For example, a JupyterLess notebook
performing data-intensive operations may not fit the entire
working set in the cache, leading to a high eviction rate. To
address this, each cachelet tracks the number of evictions
of each locally-cached object and votes to scale out by one
instance, if any object has been evicted more than once since
the last controller query. If no object has been evicted more
than once but there is still substantial cache access traffic,
Faa$T votes to do nothing (add 0 instances). It votes to scale
in by one instance when the frequency of accesses is low.
Many existing caching systems statically allocate re-

sources and either cannot auto-scale their capacity as the
amount of data accessed varies or require application hints to
do so. OFC uses per-application machine learning models to
achieve the same dynamic cache size scaling, which requires
frequent retraining and mechanisms to prevent application
“out-of-memory” failure.
Bandwidth scaling. Faa$T also supports applications with
large input objects. For such objects, Faa$T equally partitions
the download from remote storage across multiple cachelets
to (a) create a higher cumulative I/O bandwidth to remote
storage, and (b) exploit the higher communication bandwidth
between instances (𝐵𝑊𝐼𝑛𝑠𝑡 ) compared to the bandwidth be-
tween each instance and remote storage (𝐵𝑊𝐵𝑆 ).

When a Faa$T cachelet receives an object access, it itera-
tively computes the data transfer latency, 𝑇𝐷𝑅 , for a number
of instances𝑁 (starting at the current number) and the object
size 𝑆 using the following formula:

𝑇𝐷𝑅 = 𝑇𝐿𝑜𝑎𝑑 + 𝑆/𝑁 × 1/𝐵𝑊𝐵𝑆 + (𝑆 − 𝑆/𝑁 ) × 1/𝐵𝑊𝐼𝑛𝑠𝑡

where 𝑇𝐿𝑜𝑎𝑑 is the instance loading latency. Faa$T periodi-
cally profiles 𝑇𝐿𝑜𝑎𝑑 , 𝐵𝑊𝐵𝑆 , and 𝐵𝑊𝐼𝑛𝑠𝑡 to account for varia-
tions in the network and the remote storage bandwidths. The
iterative process stops at the 𝑁 where 𝑇𝐷𝑅 changes by less
than 10% or when 𝑇𝐷𝑅 increases between iterations. If the
resulting 𝑁 is greater than the current number of instances,
the Faa$T cachelet immediately contacts the controller to
scale out to 𝑁 . Faa$T then waits for the new instances to be
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created (by checking the Membership Daemon) and sends
each of them a request to download a different byte range
of size 𝑆/𝑁 . As scale-in is not as time-critical, Faa$T does it
through periodic voting (when queried by the controller) as
the number of object accesses becomes small.

We find that bandwidth-based scale-out is worthwhile for
objects on the order of hundreds of MB (Section 6.5); this
will become smaller as cold-start optimizations continue to
appear [1, 13, 18, 40, 55].
Handling conflicting scaling requests. The scaling poli-
cies work concurrently, so there may be scenarios where they
make conflicting scaling requests to the Scale Controller. For
example, compute scaling may want to scale out, while cache
size scaling may want to scale in. When there are conflict-
ing votes, the controller scales out if any policy determines
that scale-out is needed. It scales in if all policies suggest
scale-in will not hurt. This is similar to the approach taken
by existing systems for right-sizing storage clusters [34].
Idle function computation resources. When instances
are added for cache size or bandwidth scaling, their compu-
tation resources can be wasted. Faa$T minimizes resource
waste by scaling in when the frequency of accesses is low.
Providers can also leverage techniques for running low-
priority tasks (e.g., analytics jobs) on unused resources [61].

5 IMPLEMENTATION
Production FaaS platform. We implement Faa$T for
Azure Functions, and have open-sourced the bulk of it [15,
16]. In Azure Functions, an application comprises one or
more functions. Each function defines its data bindings,
which Faa$T uses to transparently load and manage objects:
trigger (e.g., HTTP request), inputs (e.g., blob), and outputs
(e.g., message queue). Users optionally set Faa$T policies
(scaling, eviction, and consistency) using simple application-
specific configurations during deployment. Users can also
mark objects that should not be cached by Faa$T.

As we show in Figure 7, an application instance executes
in either a VM or a Docker container, and includes the FaaS
runtime and function-execution workers. Upon receiving
incoming requests (e.g., as a result of an incoming HTTP
request, a new blob being created), the runtime collects the re-
quested input bindings and invokes the function in a worker
while passing the appropriate arguments to it. When the
worker finishes executing the function, it replies to the run-
time with the produced output(s) and the runtime processes
them (e.g., writes a blob to remote storage or writes to a
message queue). If there are multiple concurrent invocations,
more worker processes can be spawned on the same instance
to execute them in parallel. Azure Functions leverages Azure
Blob Storage as its remote storage service.
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Figure 7: Faa$T integrated with the FaaS platform. Runtime
and workers point to the same shared memory objects.

As Figure 5 shows, a Frontend component handles HTTP
requests and does compute scaling. We extend this compo-
nent to implement bandwidth-based scaling (Section 4).
Caching data. We implement the core of Faa$T in the run-
time (C# code) with minimal changes to the workers (Python
and Node.js). In the original design, the runtime and workers
exchanged control and data messages over a persistent RPC
channel. Faa$T replaces the data messages with a shared
memory area, while keeping control messages over RPC.
The shared area is also where Faa$T caches data. Data com-
munication between the Faa$T cachelets and the workers
happens via passing shared memory addresses, reducing
end-to-end latency. In addition, unlike existing systems that
need to maintain duplicate object copies [39], using shared
memory reduces the memory footprint by only keeping a
single object copy [16]. The workers managed by the same
runtime share the cached objects.
When the runtime prepares input data bindings before

invoking a function, Faa$T intercepts them and checks the
cache first (Section 3.2). When a function produces an out-
put, Faa$T caches it for future invocations. This cache write
triggers any functions that have the newly added object as
their trigger binding. This improves latency for applications
that rely on writing intermediate outputs to external sources
(e.g., blob storage) to trigger subsequent functions.

We support applications written in C#, Python, and
Node.js. Supporting other languages would require minimal
changes. We use the shared memory APIs already available
in most languages for both Linux and Windows. When we
run applications in containers (vs VMs), we share (setting
up permissions) the cache space across containers.
Distributed cache. Each runtime instance saves somemeta-
data about the running application in a blob from remote
storage. We store the Faa$T membership information in this
blob and the cachelets periodically heartbeat their state there.
The consistent hashing algorithm uses SHA256 for hashing
and 100 cachelet replicas for load balancing. More replicas
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did not improve load balancing and increased the ownership
lookup time. Fewer replicas created ownership hot spots.
Since Azure Functions already uses HTTP for commu-

nication between its components, we use this interface to
exchange data between Faa$T cachelets. We evaluated other
approaches like RPC (with Protocol Buffers [42]) but the
improvements were negligible and the complexity of main-
taining a new channel would offset them. We could also
leverage RDMA but have not experimented with it.
Other platforms. Faa$T’s design and implementation is
extensible to FaaS platforms beyond Azure Functions. Faa$T
directly applies to the equivalent components of most plat-
forms (e.g., runtime, worker processes, Scale Controller). All
platforms use the concept of triggers and interact with exter-
nal data services. However, not all of them use bindings to
map the data but rely on libraries to explicitly access it inside
the function body. We would need to extend these libraries
(e.g., Boto3 [3] in AWS Lambda) to interact with Faa$T and
look-up the cache before accessing the remote storage.

6 EVALUATION
6.1 Methodology
Comparison points. We perform two types of comparisons.
The first is an analysis of running the application logs from
Section 2.1 on top of Faa$T. This allows us to show the
improvements these applications would get with Faa$T. The
second evaluates the four access scenarios that functions
may encounter: objects are accessed through local hits (LH),
local misses (LM), remote hits (RH), or remote misses (RM).

We compare Faa$T against six baselines: (a) a large, local
VM where all accesses are local and there are no function
invocation overheads (Native); (b) Azure Functions without
Faa$T (Vanilla) that accesses all objects from remote object
storage. Its performance is equal to Faa$T LM; (c) InfiniCache
(IC) [56] that we approximate by statically configuring Faa$T
to use only remote instances. Its best case performance is
equal to Faa$T RH; (d) Cloudburst’s caching layer (CB) [53].
Its best case performance is equal to Faa$T LH; (e) Pocket [34],
approximated with a manually managed Redis VM with all
data available at memory speed (no Flash accesses); and (f)
a commercial Redis service, Azure Cache for Redis (Redis
service). Azure Cache for Redis is the offering that matches
our VM size in memory and network bandwidth. It is akin
to what is used by Locus [45]. Data is stored and accessed
from Redis as opposed to remote object storage.
Applications. We use the two applications from Section 2.3:
ML inference and JupyterLess notebooks. We use application
latency and cost as primary metrics. For each experiment,
we report the mean and standard deviation of 3 runs.

For ML inference, we evaluate both single model inference
and inference pipelines. For single model inference, we use

two separate models that differ in latency and resource foot-
prints: SqueezeNet [28] (5MB), and AlexNet [35] (239MB).
For the inference pipeline, we evaluate the AMBER Alert
pipeline of Section 2.3; the output of the bounding box model
(MobileNet Single-Shot Detector [27], 35MB) is fed into peo-
ple (ResNet50 [25], 97MB) and car recognition (SqueezeNet,
5MB) models. In all inference cases, functions access an input
image, the model, and the class labels (a text file).

For JupyterLess, we use five notebooks: (a) single message
logging (No-Op); (b) summing a 350MB DataFrame column;
(c) capacity planning with data collection and plotting; (d)
FaaS characterization of Section 2.1; and (e) counting up to
1K. The function data objects consist of the notebook state
after each cell’s execution, which is stored in JSON format.
Experimental setup. Each application instance is a single
VM. The default instance type (used in Sections 6.3 to 6.7)
is a Standard_DS4_v2 [7] Azure VM with 8vCPUs, 28GiB
of DRAM, and 750MB/s network bandwidth. It runs Ubuntu
18.04 with 5.4.0 kernel on Intel Xeon E5-2673 CPUs oper-
ating at 2.40GHz. I/O bandwidth to remote storage (Azure
Blob Storage) is lower at 90MB/s for large objects. In our
production setting, the VMs are pre-provisioned: an applica-
tion instance cold-start involves loading and deploying the
serverless runtime together with the application code.
Cost model. We derive user costs following the common
pricing by FaaS providers. Function invocations are charged
for the time and resources they take ($/𝐺𝐵-𝑠 , order of 10−5),
while VMs are charged for their lifetime ($/𝑠 , order of 10−1).
We assume Native and systems with additional resources are
statically provisioned the whole time. Specifically, we charge
for extra resources whenever the caching or storage system
is external to the FaaS platform (i.e., Pocket, Redis, Redis
Service) or specialized for FaaS in some way (CloudBurst).
Except for Redis service, we charge these systems for one
extra VM of the same instance size as the default application
instance. The VMs are charged their on-demand prices. For
Redis service, we provision per service class and charge the
class’s price. The additional resource costs can be amortized
by multiple applications sharing the same resources. Vanilla,
InfiniCache, and Faa$T use existing commodity storage (e.g.,
AWS S3, Azure Storage), so we do not charge them for extra
resources. We also add the cost of remote storage data trans-
fer ($/𝑜𝑝 , order of 10−6) to Faa$T LM and RM, and Vanilla.

6.2 Faa$T with production applications
We simulate the end-to-end performance of the Faa$T ap-
plications from Section 2.1. Our simulator uses the default
policies for consistency (synchronous writes to owner, syn-
chronous writes to remote storage, read version from remote
storage) and eviction (LRU), and implements the scaling
policies described in Section 4. To model Faa$T’s access la-
tencies, we measured read and writes latencies for 1B to 2GB
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Figure 8: CDF of improvement over blob storage for a 128MB
cache (left) and average improvement as the size of Faa$T
varies (right) with the application logs from Section 2.1.
Times represent different unload periods with pre-warm dis-
abled. Faa$Twith pre-warm improves performance by 50% or
more for ∼35% of applications, and has an average improve-
ment of over 40% for a 128MB cache.

object sizes using our Faa$T implementation described in
Section 5. We vary the size of Faa$T from 1KB to 128MB;
larger cache sizes showed no further improvement. We also
vary the unload period and show how it affects performance
when Faa$T cannot pre-warm frequently-accessed objects.

Figure 8 shows the CDF of percent improvement over
blob storage for a 128MB cache (left) and average percent
improvement as the size of Faa$T varies (right). First, with
just 128MB, Faa$T with pre-warm improves performance
by 50% or more for about 35% of applications. Faa$T also
has an average improvement of over 40% for a 128MB cache.
Second, as the unload period gets smaller, Faa$T’s pre-warm
becomes more important to ensure frequently-accessed ob-
jects are available during the next application invocation.
Third, improvement is correlated with reuse: we found that
smaller objects tend to be reused more often, which resulted
in greater performance improvements. Finally, we note that
Faa$T is designed to support applications that run in produc-
tion today (with object sizes of tens to hundreds of KB), but
also for future applications that will access much larger ob-
jects (hundreds to thousands of MB) as shown in Section 6.3.

6.3 Comparing Faa$T to existing systems
ML inference. Figure 9 shows the latency for the AM-
BER Alert pipeline and single inference with AlexNet and
SqueezeNet. First, the figure shows that Faa$T LH improves
latency by 61%, 87%, and 55% faster than Vanilla for the AM-
BER Alert pipeline, AlexNet, and SqueezeNet, respectively.
This demonstrates that avoiding remote storage accesses and
using cache triggers can significantly improve FaaS perfor-
mance. Second, for the AMBER Alert pipeline, Faa$T’s LH
and RH are faster than using a Redis service, while Faa$T RH
is equivalent to using a manually managed Redis VM (Pocket
in Figure 9a). This is significant given the complexity of man-
ually managing a Redis VM and the significant cost of using
a Redis service (discussed below). Faa$T offers lower latency,
while remaining transparent and relieving users of any con-
figuration burden. Third, Faa$T’s LM and RM exhibit similar

Notebook Native IM Faa$T

Capacity planning 6.0s ± 0.2s 8.0s ± 0.3s
FaaS characterization 40.4s ± 8.9s 68.0s ± 0.8s
No-Op 0.2ms ± 0ms 34.4ms ± 8.7ms

Table 4: End-to-end latency running notebooks. Faa$T can
run JupyterLess notebooks interactively.

latencies, with the variability coming from the accesses to
remote storage. This suggests using a multi-instance cache
does not further penalize cache miss performance. Finally,
Faa$T LH and RH perform well for both small (input images
and class labels) and large objects (the models).
JupyterLess. Figure 10 shows the performance of sum-
ming a 350MB DataFrame column in a JupyterLess note-
book. There are two Native setups: for In-Memory (IM) the
DataFrame is pre-loaded in memory before summing, while
for Remote Storage (RS) the latency of remote storage ac-
cess is counted as part of the summation. Faa$T LH and RH
improve performance compared to Vanilla by 62% and 29%,
respectively. Compared to Native RS, Faa$T’s LH and RH
improve performance by 92% and 86%, respectively.

Table 4 shows the latency of running a capacity planning
notebook (includes data collection and plotting), the FaaS
characterization of Section 2.1, and a No-Op notebook that
logs a single message. Each run has a mix of data access
scenarios for Faa$T, since a local copy of the Jupyter state is
saved per cell, and is read from a cachelet when executing
the following cell. For the former two notebooks, the perfor-
mance gap with Native IM comes from serializing plots and
sending them to the notebook user interface. Thus, Faa$T
can run JupyterLess notebooks interactively, and with near-
native performance when the notebook is not trivial.
Cost. Figure 11 show the cost-per-hour comparison of run-
ning the applications end-to-end (lower is better). Cost is
normalized to Native, and the y-axis is in log scale. We show
cost for different application invocation IaTs between 10ms
and 1 hour. For context, the application with the median IaT
in our characterization (Section 2.1) has an average IaT of 20
minutes. For Faa$T, we show the case where the application
ran end-to-end with local hits. We do not show Redis service
due to its large cost (Faa$T is 6 orders of magnitude cheaper).
The figure shows that Faa$T can provide huge cost sav-

ings. For applications with infrequent invocations (e.g., once
per hour), Faa$T is 99.999% cheaper than a Native VM. Per
hour, Faa$T is cheaper than all baselines for all invocation in-
tervals, except for the AMBER Alert pipeline at 10ms, where
it is 33% more expensive than Native. For all other cases,
Faa$T is 50% to 99.999% cheaper than caching and storage
layers that require separate servers, such as Cloudburst and
Pocket. From Section 2.1, 99.88% of applications have average
IaT ≥ 10ms: in these cases, the cost of servers would almost
always completely dominate the overall cost.
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Figure 9: Faa$T versus existing systems for ML inference. Faa$T improves performance by accessing data in local or remote
cache instances. (LH = Local Hit, RH = Remote Hit, LM = Local Miss, RM = Remote Miss, CB = Cloudburst, IC = InfiniCache.)
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Figure 10: Summing a 350MBDataFrame column in a Jupyter-
Less notebook. In Native IM, the DataFrame is already pre-
loaded before summing, while Native RS fetches it from re-
mote storage before summing. Faa$T improves performance
by accessing data in local or remote cache instances.
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Figure 11: Cost normalized toNativeVM for theAMBERAlert
pipeline (left) and summing a 350MB DataFrame column in
a JupyterLess notebook (right). Each bar represents an inter-
invocation period. The y-axis is in log-scale (lower is better).
Faa$T is 50% to 99.999% cheaper than the baselines.

Discussion on comparison to Native. Even when all
accesses are servedwith local (LH) or remote hits (RH), Faa$T
is slower than a Native VM with all data stored locally and
there are no function invocation overheads. However, as we
have shown in Figure 11, such a Native setup can be orders of
magnitude more expensive than Faa$T, since we must keep
all VMs running even when applications are idle. Moreover,
the user is responsible for resource and data management.
With Faa$T being a part of the FaaS runtime, users only pay
for the time resources are consumed for both compute and
caching. Moreover, local hits are on the order of hundreds
of ms, which is close to interactive for many use cases.

Scenario Heap growth succeeded? Latency

No Mem Daemon No 235.0ms ± 3.2ms
Mem Daemon, no scaling Yes 678.6ms ± 64.8ms
Mem Daemon, scaling Yes 502.9ms ± 28.5ms

Table 5: Latency of running a 350MB DataFrame summation
in a JupyterLess notebook after growing heap memory, and
whether the heap growth succeeded. We evaluate: (a) without
the Memory Daemon, (b) with the Memory Daemon, but no
cache size scaling, and (c) with Memory Daemon, and Faa$T
scales to two instances. Faa$T does not compromise applica-
tion functionality, and improves performance by scaling.

6.4 Can Faa$Tmanage memory effectively?
We consider the JupyterLess notebook application that sums
a 350MB column. After loading in the DataFrame and per-
forming the summation, the application allocates an array
that consumes 96% of the application’s total memory. Then,
the application again computes the summation of the 350MB
column, which requires the reloading of the DataFrame that
is evicted. We show three scenarios: (a) without the Memory
Daemon to evict objects when the heap memory grows, (b)
the Memory Daemon evicts objects, but there is no cache
size scaling, and (c) the Memory Daemon evicts objects, and
Faa$T scales to two instances.

Table 5 shows the performance of the second summation
of the 350MB column, and whether the array allocation com-
pleted successfully. When the Memory Daemon does not
trigger object eviction, the array allocation fails, but the sum-
mation matches the performance of a local hit. When the
Memory Daemon triggers object eviction, but cannot scale,
the array allocation succeeds, and the summation perfor-
mance is a mix of local hits and misses. Finally, when the
Memory Daemon triggers object eviction, and scales the
cache size to improve the number of remote hits, the array
allocation succeeds, and the summation performance is a mix
of all four data access types. Since Faa$T opportunistically
uses application memory, functionality is not compromised
for applications that use large heap memory amounts.
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Figure 12: Latency of fetching an object from remote storage as the number of instances vary for increasingly large object sizes.
If the instances are not loaded, they incur a cold-start; we only consider the running case for one instance. Faa$T determines
whether to scale data loading across multiple instances to increase bandwidth.

6.5 Scaling as the object size varies
Faa$T can scale the number of instances based on object
sizes. We consider four object sizes: 400KB, 40MB, 400MB,
and 800MB. The amount of data downloaded by each Faa$T
cachelet is evenly split between the available instances. For
example, if there are two instances and the object size is
400KB, each one downloads 200KB. The data is then pro-
cessed at a single instance. For each object size, we show two
cases: (a) when all application instances are running, and (b)
when additional instances (more than one) must be loaded in
order to fetch the objects (thus incurring a cold-start latency).
Figure 12 shows the time to download the increasingly

large object sizes from remote storage as the number of
instances varies. For small objects (400KB), the download
latency is low enough that using more than one instance
degrades performance, especially if the instances need to
be loaded. For the 40MB object, partitioning the download
across multiple instances is beneficial if the instances are
already loaded. It is 47% faster to download the object with
four cachelets than with one. For the 400MB object, it is 9%
faster to download the object with four instances than one if
the instances are not already loaded, and 47% faster to down-
load the objects with four instances than one if the instances
are already loaded. For the 800MB object, it is beneficial to
use four cachelets to load the object in parallel, even if the in-
stances need to be loaded. If the instances are already loaded,
it is 60% faster to download with four cachelets compared to
one. If the instances need to be loaded, it is 44% faster.

6.6 Consistency versus performance
Faa$T allows users to trade off consistency for performance.
We evaluate the write/read settings from Table 3 using a
JupyterLess notebook in which five cachelets share the state
for counting up to 1K. Application instances add to the
counter in round-robin fashion, and we expect the counter
at the end to have a value of 1K. We measure inconsistencies
as the absolute difference between the final counter value
and 1K. This is a critical primitive in multiplayer games [17].

Write Write Read
target mode target E2E lat (s) Per-req. lat (ms) # inconsist.

Storage Sync Storage 74.4 ± 0.2 80.0 ± 29.5 0 ± 0
Owner Sync Owner 42.6 ± 0.2 41.6 ± 12.8 0 ± 0
Owner Async Owner 39.7 ± 0.6 38.5 ± 11.4 1.3 ± 1.9
Owner Sync Local 32.7 ± 0.3 32.7 ± 9.0 800 ± 0
Local Sync Local 31.1 ± 0.3 30.3 ± 13.1 800 ± 0
Local Aync Local 31.0 ± 0.3 30.3 ± 13.2 800 ± 0
Table 6: Latency (end-to-end and per-request) and number
of inconsistencies for different settings for a JupyterLess
notebook counting to 1K with five instances sharing state.
Inconsistencies are the absolute difference between the final
counter value and 1K. Performance increases as consistency
and fault tolerance decrease.

Table 6 shows the end-to-end latency, per-request latency,
and number of inconsistencies for all five settings. As ex-
pected, latency drops as we relax consistency requirements.
For example, writing to the local cache and reading from the
local cache is fastest, but provides no consistency (800 incon-
sistencies recorded) and the lowest fault tolerance. Writing
to the local cache asynchronously and reading from the local
cache is equivalent to Cloudburst’s performance. Cloudburst
would exhibit better consistency due to its lattice datatypes,
but requires support from the datastore. Latency varies the
most when writing and reading from remote storage, and
the least when writing and reading from the local cache.

6.7 Sensitivity to instance size
Finally, we evaluate the sensitivity of running applications
with Faa$T as the instance size varies. We run the AMBER
Alert pipeline and sum a 350MB DataFrame column in a
JupyterLess notebook. Instances scale linearly in terms of
memory and network bandwidth as the number of vCPUs
increases. For example, the 2vCPU instance has 8GiB of mem-
ory and 1Gbps of network bandwidth (Standard_DS2_v2),
and the 4vCPU instance has 16GiB of memory and 2Gbps of
network bandwidth (Standard_DS3_v2) [7].
Figures 13a and 13b show that, as instances increase in

size, latency decreases for both applications. Larger instances
have higher network bandwidth, which is beneficial for data
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Figure 13: Latency as instance size varies for (a) the AMBER
Alert pipeline, and (b) summing a 350MB DataFrame column
in a JupyterLess notebook. Instances memory and network
bandwidth scale linearly as the number of cores increases.
Faa$T benefits from higher bandwidth instances.

accesses to remote storage and between instances. Data ac-
cesses of these two applications saturate the bandwidth with
the 8vCPU instance. Thus, although the 16vCPU instance
is the highest bandwidth instance size, the performance re-
mains the same as the 8vCPU. Some cloud providers offer
instances as small as 2vCPU with up to 10Gbps bandwidth,
allowing Faa$T to have high performance even on small
instances suitable for FaaS.
7 DISCUSSION
Stateful serverless environments. Stateful FaaS platforms
(e.g., Azure Durable Functions [12]) are designed to manage
and persist coordination state about the execution.While this
diminishes their need for remote storage, they still require re-
mote storage for input and output data, snapshots, persisting
progress, and communication, which can be cached and man-
aged by Faa$T. Hence, Faa$T’s design would likely stay the
same even with the emergence of stateful FaaS platforms as
it (a) enables transparent communication between cachelets,
which is not offered by existing stateful platforms, and (b)
has features like pre-warming and bandwidth scaling that are
necessary even with alternative means of communication.
SSD versus in-memory caching. We made Faa$T an in-
memory cache since we found an SSD-only cache was not
performant enough to enable interactive applications (espe-
cially for small objects). However, it makes sense to explore
a hierarchical/tiered approach where Faa$T optimizes for
cost and performance based on object access patterns.
8 RELATEDWORK
Ephemeral serverless storage. In Section 2.2 we describe
the limitations of several existing storage and data caching
solutions for FaaS [34, 45, 51, 53, 56]. Unlike these systems,
Faa$T does not require external resources beyond what is
provided to the function, is transparent to applications, and
can scale as the data size and access patterns vary.
OFC [39] is the closest work to Faa$T. It transparently

caches objects using RAMCloud [41] and leverages machine
learning to dynamically size the cache. Unlike OFC, Faa$T

pre-warms objects when an application is loaded, supports
large (> 10MB) object caching and scales to reduce their data
transfer latency from remote storage, and only needs to keep
one copy of data in shared memory (compared to OFC that
requires a copy in the worker and in RAMCloud). Faa$T also
incurs lower decision overheads and is easier to manage by
not requiring machine learning for its decision-making.
Serverless frameworks. Several frameworks have recently
emerged enabling users to run, for example, linear alge-
bra [30], video encoding [20], video analytics pipelines [4],
ML training [14], and general burst-parallel applications [19]
on up to thousands of serverless functions. These, and their
applications, would benefit from managing and transfer-
ring intermediate data between serverless functions using
Faa$T. Since Faa$T is transparent to applications, little to
no changes would be needed to interact with Faa$T.
Improving serverless performance. Many approaches
have been proposed to reduce serverless function execution
times: making containers more lightweight [1, 40], snapshot-
ting techniques [13, 18, 55], and reducing the number of cold-
starts [21, 48]. Shredder [60] focuses on how to provide isola-
tion for multi-tenancy. Lambada [38] improves performance
for applications with exchange operators. Lambdata [54]
allows users to expose their data read and write intents to
co-locate functions working on the same data. Faa$T is or-
thogonal and compatible with these optimizations.
Consistency and fault tolerance. Consistency and fault
tolerance protocols have been heavily studied. Recent work
has explored how to enable both of these for serverless appli-
cations using the KVS backend [51, 53], fault tolerance shim
layers [52], and novel data structures to support exactly-one
semantics [59]. Faa$T transparently supports different con-
sistency and fault tolerance settings directly in the functions
runtime, and can be extended to support future protocols.

9 CONCLUSION
Faa$T is a transparent caching layer for serverless applica-
tions. We motivated its design with a characterization of
production applications. We tie Faa$T to the application,
scale based on compute demands and data access patterns,
and provide data consistency that can be set per application.
We implemented it for Azure Functions and showed that com-
pared to existing systems, Faa$T is on average 57% faster and
99.99% cheaper when running two challenging applications.
We released sanitized logs from our characterization at [6].
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